SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("fender2758/paraphrase-multilingual-MiniLM-L12-v2-winsearch")
# Run inference
sentences = [
'제로에서 사용한 드림캐쳐 음악 파일이네요',
'LowpanInterface.java',
'60418b56ab1a0123678f0375882bfb04.declarations_content',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,295,920 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 2 tokens
- mean: 15.08 tokens
- max: 37 tokens
- min: 3 tokens
- mean: 15.7 tokens
- max: 37 tokens
- min: 0.0
- mean: 0.09
- max: 1.0
- Samples:
sentence_0 sentence_1 label '언링크드'라는 시리즈 중 두번째 파일의 확장자가 잘린 버전
WindowsSdk.java
0.0
고무고래를 본 모습의 이미지 파일이군요.
1041a3b24d77e6d06b1415efe9b168ff.resolved
0.0
'usb 디바이스 연결' 이미지 파일의 시리즈 중 하나
df5d0ee3b8db0133f64348dc17cab1ec.unlinked2
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 256per_device_eval_batch_size
: 256multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: 2past_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0557 | 500 | 0.0572 |
0.1115 | 1000 | 0.0485 |
0.1672 | 1500 | 0.046 |
0.2230 | 2000 | 0.0439 |
0.2787 | 2500 | 0.0419 |
0.3345 | 3000 | 0.0413 |
0.3902 | 3500 | 0.0405 |
0.4460 | 4000 | 0.0405 |
0.5017 | 4500 | 0.0394 |
0.5575 | 5000 | 0.0391 |
0.6132 | 5500 | 0.0385 |
0.6690 | 6000 | 0.0382 |
0.7247 | 6500 | 0.0387 |
0.7805 | 7000 | 0.0373 |
0.8362 | 7500 | 0.037 |
0.8920 | 8000 | 0.037 |
0.9477 | 8500 | 0.0368 |
1.0035 | 9000 | 0.0372 |
1.0592 | 9500 | 0.036 |
1.1150 | 10000 | 0.0356 |
1.1707 | 10500 | 0.0353 |
1.2264 | 11000 | 0.0347 |
1.2822 | 11500 | 0.0335 |
1.3379 | 12000 | 0.0344 |
1.3937 | 12500 | 0.034 |
1.4494 | 13000 | 0.0342 |
1.5052 | 13500 | 0.0337 |
1.5609 | 14000 | 0.0338 |
1.6167 | 14500 | 0.0331 |
1.6724 | 15000 | 0.0333 |
1.7282 | 15500 | 0.0338 |
1.7839 | 16000 | 0.0332 |
1.8397 | 16500 | 0.0328 |
1.8954 | 17000 | 0.0331 |
1.9512 | 17500 | 0.0329 |
2.0069 | 18000 | 0.0334 |
2.0627 | 18500 | 0.0326 |
2.1184 | 19000 | 0.0325 |
2.1742 | 19500 | 0.0323 |
2.2299 | 20000 | 0.0317 |
2.2857 | 20500 | 0.0309 |
2.3414 | 21000 | 0.0317 |
2.3971 | 21500 | 0.0315 |
2.4529 | 22000 | 0.0315 |
2.5086 | 22500 | 0.0313 |
2.5644 | 23000 | 0.0317 |
2.6201 | 23500 | 0.0311 |
2.6759 | 24000 | 0.0313 |
2.7316 | 24500 | 0.0316 |
2.7874 | 25000 | 0.0313 |
2.8431 | 25500 | 0.031 |
2.8989 | 26000 | 0.0313 |
2.9546 | 26500 | 0.0311 |
Framework Versions
- Python: 3.9.16
- Sentence Transformers: 3.3.1
- Transformers: 4.44.1
- PyTorch: 1.12.1.post201
- Accelerate: 0.33.0
- Datasets: 3.1.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.