|
--- |
|
language: |
|
- es |
|
- en |
|
pipeline_tag: image-classification |
|
widget: |
|
- src: https://upserve.com/media/sites/2/Bill-from-Mezcalero-in-Washington-D.C.-photo-by-Alfredo-Solis-1-e1507226752437.jpg |
|
example_title: receipt |
|
- src: https://templates.invoicehome.com/invoice-template-us-neat-750px.png |
|
example_title: invoice |
|
--- |
|
**InvoiceReceiptClassifier** is a fine-tuned LayoutLMv2 model that classifies a document to an invoice or receipt. |
|
|
|
## Quick start: using the raw model |
|
|
|
```python |
|
from transformers import ( |
|
AutoModelForSequenceClassification, |
|
LayoutLMv2FeatureExtractor, |
|
LayoutLMv2Tokenizer, |
|
LayoutLMv2Processor, |
|
) |
|
model = AutoModelForSequenceClassification.from_pretrained("fedihch/InvoiceReceiptClassifier") |
|
feature_extractor = LayoutLMv2FeatureExtractor() |
|
tokenizer = LayoutLMv2Tokenizer.from_pretrained("microsoft/layoutlmv2-base-uncased") |
|
processor = LayoutLMv2Processor(feature_extractor, tokenizer) |
|
``` |
|
```python |
|
from PIL import Image |
|
input_img = Image.open("*****.jpg") |
|
w, h = input_img.size |
|
input_img = input_img.convert("RGB").resize((int(w * 600 / h), 600)) |
|
encoded_inputs = processor(input_img, return_tensors="pt") |
|
for k, v in encoded_inputs.items(): |
|
encoded_inputs[k] = v.to(model.device) |
|
outputs = model(**encoded_inputs) |
|
logits = outputs.logits |
|
predicted_class_idx = logits.argmax(-1).item() |
|
id2label = {0: "invoice", 1: "receipt"} |
|
print(id2label[predicted_class_idx]) |
|
``` |
|
|
|
|