D2coder / modeling_d2coder.py
feather820's picture
Upload 3 files
6eb61b1 verified
from transformers import Qwen2Config
import inspect
import math
import os
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers import PretrainedConfig
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
import numpy as np
from transformers import Qwen2Config
from transformers import Qwen2ForCausalLM
import inspect
import math
import os
import warnings
from typing import List, Optional, Tuple, Union
from tqdm import tqdm, trange
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
import numpy as np
import torch
import os
import argparse
import json
from tqdm import tqdm
from typing import cast, List, Union, Tuple
from transformers import AutoTokenizer, AutoModel # pylint: disable=C0413
from peft import LoraConfig, get_peft_model, TaskType
import time
import torch.nn.functional as F
import sys
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm, trange
from collections import defaultdict
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, AutoConfig
import torch.distributed as dist
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import re
# PMA部分 post_normal
class MAB_POST(nn.Module):
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
super(MAB_POST, self).__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_Q, dim_V)
self.fc_k = nn.Linear(dim_K, dim_V)
self.fc_v = nn.Linear(dim_K, dim_V)
if ln:
self.ln0 = nn.LayerNorm(dim_V)
self.ln1 = nn.LayerNorm(dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
nn.init.xavier_uniform_(self.fc_q.weight)
nn.init.xavier_uniform_(self.fc_k.weight)
nn.init.xavier_uniform_(self.fc_v.weight)
nn.init.xavier_uniform_(self.fc_o.weight)
# Q(bs, 1, emb), pad_mask (bs, seq) Post-LN
def forward(self, Q, K, pad_mask=None):
Q_ = self.fc_q(Q)
K_, V_ = self.fc_k(K), self.fc_v(K)
dim_split = self.dim_V // self.num_heads
Q_ = torch.cat(Q_.split(dim_split, 2), 0) # (bs* num_head, 1, emb)
K_ = torch.cat(K_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
V_ = torch.cat(V_.split(dim_split, 2), 0)
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, 1, seq)
score = Q_.bmm(K_.transpose(1,2))/math.sqrt(self.dim_V)
score = score.masked_fill(pad_mask == 0, -1e12)
A = torch.softmax(score, 2) # (bs*num_head, 1, seq)
A = A * pad_mask
O = torch.cat(A.bmm(V_).split(Q.size(0), 0), 2) # (bs, 1, emb)
O = Q + O
# O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2)
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
O = O + F.relu(self.fc_o(O))
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
return O
# PMA部分 pre_normal
class MAB_PRE_NORMAL(nn.Module):
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
super(MAB_PRE_NORMAL, self).__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_Q, dim_V)
self.fc_k = nn.Linear(dim_K, dim_V)
self.fc_v = nn.Linear(dim_K, dim_V)
if ln:
self.ln_q = nn.LayerNorm(dim_V)
self.ln_kv = nn.LayerNorm(dim_V)
self.ln_o = nn.LayerNorm(dim_V)
self.ln_final = nn.LayerNorm(dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
nn.init.xavier_uniform_(self.fc_q.weight)
nn.init.xavier_uniform_(self.fc_k.weight)
nn.init.xavier_uniform_(self.fc_v.weight)
nn.init.xavier_uniform_(self.fc_o.weight)
# pad_mask (bs, seq) Pre-LN 正常架构
def forward(self, Q, K, pad_mask=None):
Q_ = Q if getattr(self, 'ln_q', None) is None else self.ln_q(Q)
K_ = K if getattr(self, 'ln_kv', None) is None else self.ln_kv(K)
Q_ = self.fc_q(Q_)
K_, V_ = self.fc_k(K_), self.fc_v(K_)
dim_split = self.dim_V // self.num_heads
Q_ = torch.cat(Q_.split(dim_split, 2), 0) # (bs* num_head, 1, emb)
K_ = torch.cat(K_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
V_ = torch.cat(V_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, 1, seq)
score = Q_.bmm(K_.transpose(1,2))/math.sqrt(self.dim_V)
score = score.masked_fill(pad_mask == 0, -1e12)
A = torch.softmax(score, 2) # (bs*num_head, 1, seq)
A = A * pad_mask
O = torch.cat(A.bmm(V_).split(Q.size(0), 0), 2)
O = Q + O
O_ = O if getattr(self, 'ln_o', None) is None else self.ln_o(O) # O的layernorm分支
O_ = O + F.relu(self.fc_o(O_))
return O_ if getattr(self, 'ln_final', None) is None else self.ln_final(O_)
# PMA部分 pre_gptj
class MAB_PRE_GPTJ(nn.Module):
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
super(MAB_PRE_GPTJ, self).__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_Q, dim_V)
self.fc_k = nn.Linear(dim_K, dim_V)
self.fc_v = nn.Linear(dim_K, dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
nn.init.xavier_uniform_(self.fc_q.weight)
nn.init.xavier_uniform_(self.fc_k.weight)
nn.init.xavier_uniform_(self.fc_v.weight)
nn.init.xavier_uniform_(self.fc_o.weight)
if ln:
self.ln_q = nn.LayerNorm(dim_V)
self.ln_kv = nn.LayerNorm(dim_V)
self.ln_final = nn.LayerNorm(dim_V)
# pad_mask (bs, seq)
def forward(self, Q, K, pad_mask=None):
# layernorm
Q_ = Q if getattr(self, 'ln_q', None) is None else self.ln_q(Q)
K_ = K if getattr(self, 'ln_kv', None) is None else self.ln_kv(K)
Q1 = self.fc_q(Q_)
K1, V1 = self.fc_k(K_), self.fc_v(K_)
dim_split = self.dim_V // self.num_heads
Q1 = torch.cat(Q1.split(dim_split, 2), 0) # (bs* num_head, 1, emb)
K1 = torch.cat(K1.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
V1 = torch.cat(V1.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, 1, seq)
score = Q1.bmm(K1.transpose(1,2))/math.sqrt(self.dim_V)
score = score.masked_fill(pad_mask == 0, -1e12)
A = torch.softmax(score, 2) # (bs*num_head, 1, seq)
A = A * pad_mask
O1 = torch.cat(A.bmm(V1).split(Q.size(0), 0), 2) # (bs, 1, emb)
O2 = F.relu(self.fc_o(Q_)) # (bs, 1, emb)
O_final = Q + O1 + O2
return O_final if getattr(self, 'ln_final', None) is None else self.ln_final(O_final)
class PMA(nn.Module):
def __init__(self, dim, num_heads, num_seeds, ln=False, pma_mode=None):
super(PMA, self).__init__()
self.S = nn.Parameter(torch.Tensor(1, num_seeds, dim))
nn.init.xavier_uniform_(self.S)
if pma_mode == 'post_normal':
self.mab = MAB_POST(dim, dim, dim, num_heads, ln=ln)
elif pma_mode == 'pre_normal':
self.mab = MAB_PRE_NORMAL(dim, dim, dim, num_heads, ln=ln)
elif pma_mode == 'pre_gptj':
self.mab = MAB_PRE_GPTJ(dim, dim, dim, num_heads, ln=ln)
else:
raise ValueError(f"Error, the pma_mode {pma_mode} is not implemented !")
# X: (bs, seq, emb), pad_mask: (bs, seq)
def forward(self, X, pad_mask):
if self.S.dtype != torch.bfloat16:
X = X.float()
return self.mab(self.S.repeat(X.size(0), 1, 1), X, pad_mask)
# 普通双向transformer encoder, post_normal
class EncoderLayer_POST(nn.Module):
def __init__(self, dim_V, num_heads, ln=False):
super(EncoderLayer_POST, self).__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_V, dim_V)
self.fc_k = nn.Linear(dim_V, dim_V)
self.fc_v = nn.Linear(dim_V, dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
nn.init.xavier_uniform_(self.fc_q.weight)
nn.init.xavier_uniform_(self.fc_k.weight)
nn.init.xavier_uniform_(self.fc_v.weight)
nn.init.xavier_uniform_(self.fc_o.weight)
if ln:
self.ln0 = nn.LayerNorm(dim_V)
self.ln1 = nn.LayerNorm(dim_V)
# Q:(bs, seq, emb), pad_mask:(bs, seq)
def forward(self, Q, pad_mask=None):
Q_, K_, V_ = self.fc_q(Q), self.fc_k(Q), self.fc_v(Q)
dim_split = self.dim_V // self.num_heads
Q_ = torch.cat(Q_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
K_ = torch.cat(K_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
V_ = torch.cat(V_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, seq, seq)
score = Q_.bmm(K_.transpose(1,2))/math.sqrt(self.dim_V)
score = score.masked_fill(pad_mask == 0, -1e12)
A = torch.softmax(score, 2) # (bs*num_head, seq, seq)
A = A * pad_mask # (bs*num_head, seq, seq)
O = torch.cat(A.bmm(V_).split(Q.size(0), 0), 2) # (bs, seq, emb)
O = Q + O
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
O = O + F.relu(self.fc_o(O))
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
return O
# 普通双向transformer encoder, pre LN norm
class EncoderLayer_PRE_NORMAL(nn.Module):
def __init__(self, dim_V, num_heads, ln=False):
super(EncoderLayer_PRE_NORMAL, self).__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_V, dim_V)
self.fc_k = nn.Linear(dim_V, dim_V)
self.fc_v = nn.Linear(dim_V, dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
nn.init.xavier_uniform_(self.fc_q.weight)
nn.init.xavier_uniform_(self.fc_k.weight)
nn.init.xavier_uniform_(self.fc_v.weight)
nn.init.xavier_uniform_(self.fc_o.weight)
if ln:
self.ln_qkv = nn.LayerNorm(dim_V)
self.ln_o = nn.LayerNorm(dim_V)
# Q:(bs, seq, emb), pad_mask:(bs, seq)
def forward(self, Q, pad_mask=None):
Q_ = Q if getattr(self, 'ln_qkv', None) is None else self.ln_qkv(Q) # layernorm
Q_, K_, V_ = self.fc_q(Q_), self.fc_k(Q_), self.fc_v(Q_)
dim_split = self.dim_V // self.num_heads
Q_ = torch.cat(Q_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
K_ = torch.cat(K_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
V_ = torch.cat(V_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, seq, seq)
score = Q_.bmm(K_.transpose(1,2))/math.sqrt(self.dim_V)
score = score.masked_fill(pad_mask == 0, -1e12)
A = torch.softmax(score, 2) # (bs*num_head, seq, seq)
A = A * pad_mask
O = torch.cat(A.bmm(V_).split(Q.size(0), 0), 2)
O = Q + O
O_ = O if getattr(self, 'ln_o', None) is None else self.ln_o(O) # O的layernorm分支
O_ = O + F.relu(self.fc_o(O_))
return O_
# 普通双向transformer encoder, pre LN gptj
class EncoderLayer_PRE_GPTJ(nn.Module):
def __init__(self, dim_V, num_heads, ln=False):
super(EncoderLayer_PRE_GPTJ, self).__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_V, dim_V)
self.fc_k = nn.Linear(dim_V, dim_V)
self.fc_v = nn.Linear(dim_V, dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
nn.init.xavier_uniform_(self.fc_q.weight)
nn.init.xavier_uniform_(self.fc_k.weight)
nn.init.xavier_uniform_(self.fc_v.weight)
nn.init.xavier_uniform_(self.fc_o.weight)
if ln:
self.ln_qkv = nn.LayerNorm(dim_V)
# Q:(bs, seq, emb), pad_mask:(bs, seq)
def forward(self, Q, pad_mask=None):
Q_ = Q if getattr(self, 'ln_qkv', None) is None else self.ln_qkv(Q) # layernorm
Q1, K1, V1 = self.fc_q(Q_), self.fc_k(Q_), self.fc_v(Q_)
dim_split = self.dim_V // self.num_heads
Q1 = torch.cat(Q1.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
K1 = torch.cat(K1.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
V1 = torch.cat(V1.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, seq, seq)
score = Q1.bmm(K1.transpose(1,2))/math.sqrt(self.dim_V)
score = score.masked_fill(pad_mask == 0, -1e12)
A = torch.softmax(score, 2) # (bs*num_head, seq, seq)
A = A * pad_mask
O1 = torch.cat(A.bmm(V1).split(Q.size(0), 0), 2) # (bs, seq, emb)
O2 = F.relu(self.fc_o(Q_))
O_final = Q + O1 + O2
return O_final
class Encoder(nn.Module):
def __init__(self, emb_dim, num_heads, ln, encoder_mode, num_encoder_layers):
super(Encoder, self).__init__()
self.num_encoder_layers = num_encoder_layers
if encoder_mode == 'post_normal':
self.layers = nn.ModuleList([EncoderLayer_POST(dim_V=emb_dim, num_heads=num_heads, ln=ln)
for _ in range(num_encoder_layers)])
elif encoder_mode == 'pre_normal':
self.layers = nn.ModuleList([EncoderLayer_PRE_NORMAL(dim_V=emb_dim, num_heads=num_heads, ln=ln)
for _ in range(num_encoder_layers)])
elif encoder_mode == 'pre_gptj':
self.layers = nn.ModuleList([EncoderLayer_PRE_GPTJ(dim_V=emb_dim, num_heads=num_heads, ln=ln)
for _ in range(num_encoder_layers)])
else:
raise ValueError(f"Error, the encoder_mode {encoder_mode} is not implemented !")
# X:(bs, seq, emb), mask: (bs, seq)
def forward(self, X, mask):
if self.num_encoder_layers == 0:
return X
if self.layers[0].fc_q.weight.dtype != torch.bfloat16:
X = X.float()
for layer in self.layers:
X = layer(X, mask)
return X
class D2LLMConfig(PretrainedConfig):
model_type = "qwen2"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=151936,
hidden_size=4096,
intermediate_size=22016,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=32,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
attention_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window if use_sliding_window else None
self.max_window_layers = max_window_layers
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class D2Coder(PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.plm_model = Qwen2ForCausalLM(config)
self.embedding_method = config.embedding_method
self.inf_seq_length = config.inf_seq_length
self.encoder_mode = config.encoder_mode
self.num_encoder_layers = config.num_encoder_layers
self.padding_side = config.padding_side
self.keep_max_layer = config.keep_max_layer
self.emb_dim = self.plm_model.model.embed_tokens.weight.size(1)
self.num_heads = config.pma_num_heads
self.ln = config.pma_ln
self.norm = config.pma_norm
self.pma_mode = config.pma_norm_mode
self.encoder = Encoder(self.emb_dim, self.num_heads, self.ln, self.encoder_mode, self.num_encoder_layers)
self.mha_pma = PMA(self.emb_dim, self.num_heads, 1, ln=self.ln, pma_mode=self.pma_mode)
def forward(self, inputs_all, mode, args):
# output_embeddings_a = self.get_sentence_embedding(self.embedding_method, **inputs_a)
# output_embeddings_b = self.get_sentence_embedding(self.embedding_method, **inputs_b) # (bs, emb_size)
bs = self.args.batch_size
if mode == 'train':
output_embeddings_all = self.get_sentence_embedding(self.embedding_method, **inputs_all).reshape(2+self.args.neg_K, bs, -1) # (2+K, bs, emb_size)
# if self.to_compress:
# output_embeddings_all = self.projector(output_embeddings_all)
output_embeddings_hardneg = output_embeddings_all[2:] # (neg_K, bs, emb)
hn_norm = torch.nn.functional.normalize(output_embeddings_hardneg, p=2, dim=-1)
elif mode == 'eval':
output_embeddings_all = self.get_sentence_embedding(self.embedding_method, **inputs_all).reshape(2, bs, -1) # (2, bs, emb_size)
# if self.to_compress:
# output_embeddings_all = self.projector(output_embeddings_all)
else:
raise ValueError('Error of mode value')
output_embeddings_a = output_embeddings_all[0] # (bs, emb)
output_embeddings_b = output_embeddings_all[1] # (bs, emb)
a_norm = torch.nn.functional.normalize(output_embeddings_a, p=2, dim=-1)
b_norm = torch.nn.functional.normalize(output_embeddings_b, p=2, dim=-1)
b_cross_gpus = gather_across_devices(output_embeddings_b, args.global_rank, self.world_size)
b_norm_cross_gpus = torch.nn.functional.normalize(b_cross_gpus, p=2, dim=-1) # ()
assert a_norm.size(0) == b_norm.size(0)
bs = output_embeddings_a.size(0)
# in-batch计算部分
output_in_batch_local_gpu = torch.matmul(a_norm, b_norm.t())
output_in_batch_global_gpu = torch.matmul(a_norm, b_norm_cross_gpus.t())
if mode == 'train':
# hard neg计算部分
pos_neg_emb = torch.cat([b_norm.unsqueeze(0), hn_norm], dim=0) # (1+neg_K, bs, emb)
output_hardneg_specific_task = torch.matmul(a_norm.unsqueeze(1), pos_neg_emb.permute(1,2,0)).squeeze() # (bs, 1+neg_K)
# output_pos_hardneg_rep_specific_task = torch.cat([output_embeddings_a.unsqueeze(0).expand(pos_neg_emb.size(0),-1,-1), pos_neg_emb],dim=-1)
elif mode == 'eval':
output_hardneg_specific_task = None
output_pos_hardneg_rep_specific_task = None
return output_in_batch_local_gpu, output_in_batch_global_gpu, output_hardneg_specific_task # (bs, bs) (bs, world_size*bs), (bs, 1+neg_K)
# return output_in_batch_specific_task, output_hardneg_specific_task, output_pos_hardneg_rep_specific_task
def last_embedding(self, A, index):
bs, seq, emb = A.size()
res = A[torch.arange(bs), index, :]
return res
def mean_embedding(self, A, mask):
bs, seq, emb = A.size()
res = (A * (mask.unsqueeze(-1))).sum(1) / (mask.sum(1).unsqueeze(-1))
return res
# A (bs, seq, emb_size), mask (bs, 1, seq)
def weighted_embedding(self, A, mask):
weights = (torch.arange(start=1, end=A.size(1) + 1).unsqueeze(0).unsqueeze(-1).expand(A.size()).float()).to(A.device)
input_mask_expanded = (mask.squeeze(1).unsqueeze(-1).expand(A.size()).float()).to(A.device)
sum_embedding = torch.sum(A * input_mask_expanded * weights, dim=1)
sum_mask = torch.sum(input_mask_expanded * weights, dim=1)
weighted_embedding = sum_embedding / sum_mask
return weighted_embedding
def pma_embedding(self, A, mask):
res = self.mha_pma(A, mask).squeeze(1)
return res
def get_sentence_embedding(self, embedding_method, **inputs):
outputs = self.plm_model(inputs['input_ids'], inputs['attention_mask'], output_hidden_states=True)
if embedding_method == 'last':
embedding = outputs.hidden_states[self.keep_max_layer]
index = inputs['attention_mask'].sum(-1).long() - 1
res_embedding = self.last_embedding(embedding, index)
elif embedding_method == 'mean':
embedding = outputs.hidden_states[self.keep_max_layer]
res_embedding = self.mean_embedding(embedding, inputs['attention_mask'])
elif embedding_method == 'weighted':
embedding = outputs.hidden_states[self.keep_max_layer]
res_embedding = self.weighted_embedding(embedding, inputs['attention_mask'])
elif embedding_method == 'pma':
embedding = outputs.hidden_states[self.keep_max_layer] # Qwen.hidden_state: (33, bs, seq, emb)
attention_mask = inputs['attention_mask']
embedding = self.encoder(embedding, attention_mask)
res_embedding = self.pma_embedding(embedding, attention_mask) # embedding: (bs, seq, emb), inputs['attention_mask']: (bs, seq)
else:
logger.debug('Error, no {} way to obtain embbedings'.format(embedding_method))
if not self.norm:
res_embedding = torch.nn.functional.normalize(res_embedding, p=2.0, dim=-1, eps=1e-12, out=None)
return res_embedding
def encode(self, tokenizer, sentences, batch_size=32, convert_to_numpy=True,
convert_to_tensor=False, show_progress_bar=True, max_seq_length=None, **kwargs):
if max_seq_length is None:
max_seq_length = self.inf_seq_length
input_is_string = False
if isinstance(sentences, str) or not hasattr(sentences, "__len__"):
sentences = [sentences]
input_is_string = True
all_embeddings = []
length_sorted_idx = np.argsort([-len(s) for s in sentences])
sentences_sorted = [sentences[idx] for idx in length_sorted_idx] # 大到小重排
with torch.no_grad():
for start_index in trange(0, len(sentences), batch_size, desc="Batches", disable=not show_progress_bar):
sentences_batch = sentences_sorted[start_index: start_index + batch_size]
# Compute sentences embeddingsz
with torch.no_grad():
inputs = tokenizer(sentences_batch, padding=True, truncation=True, max_length=max_seq_length, add_special_tokens=False, return_tensors='pt').to(self.plm_model.device)
embeddings = self.get_sentence_embedding(self.embedding_method, **inputs)
# if self.to_compress:
# embeddings = self.projector(embeddings)
embeddings = embeddings.detach()
if convert_to_numpy:
if embeddings.dtype == torch.bfloat16:
embeddings = embeddings.cpu().to(torch.float32)
else:
embeddings = embeddings.cpu()
all_embeddings.extend(embeddings)
all_embeddings = [all_embeddings[idx] for idx in np.argsort(length_sorted_idx)]
if convert_to_tensor:
all_embeddings = torch.stack(all_embeddings)
elif convert_to_numpy:
all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
if input_is_string:
all_embeddings = all_embeddings[0]
return all_embeddings