feather820
commited on
Upload 3 files
Browse files- config.json +40 -0
- configuration_d2coder.py +149 -0
- modeling_d2coder.py +638 -0
config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Mymodel"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 2,
|
7 |
+
"embedding_dim": 4096,
|
8 |
+
"embedding_method": "pma",
|
9 |
+
"encoder_mode": "post_normal",
|
10 |
+
"eos_token_id": 2,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 4096,
|
13 |
+
"inf_seq_length": 1024,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 13440,
|
16 |
+
"keep_max_layer": 32,
|
17 |
+
"max_position_embeddings": 65536,
|
18 |
+
"max_window_layers": 28,
|
19 |
+
"model_type": "qwen2",
|
20 |
+
"num_attention_heads": 32,
|
21 |
+
"num_encoder_layers": 0,
|
22 |
+
"num_hidden_layers": 32,
|
23 |
+
"num_key_value_heads": 4,
|
24 |
+
"padding_side": "right",
|
25 |
+
"pma_ln": true,
|
26 |
+
"pma_norm": false,
|
27 |
+
"pma_norm_mode": "post_normal",
|
28 |
+
"pma_num_heads": 32,
|
29 |
+
"rms_norm_eps": 1e-05,
|
30 |
+
"rope_theta": 1000000,
|
31 |
+
"rotary_emb_base": 1000000,
|
32 |
+
"seq_length": 65536,
|
33 |
+
"sliding_window": null,
|
34 |
+
"tie_word_embeddings": false,
|
35 |
+
"torch_dtype": "bfloat16",
|
36 |
+
"transformers_version": "4.39.2",
|
37 |
+
"use_cache": true,
|
38 |
+
"use_sliding_window": false,
|
39 |
+
"vocab_size": 92416
|
40 |
+
}
|
configuration_d2coder.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from transformers.utils import logging
|
3 |
+
|
4 |
+
|
5 |
+
logger = logging.get_logger(__name__)
|
6 |
+
|
7 |
+
|
8 |
+
class D2CoderConfig(PretrainedConfig):
|
9 |
+
r"""
|
10 |
+
This is the configuration class to store the configuration of a [`D2LLM`]. It is used to instantiate a
|
11 |
+
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
12 |
+
with the defaults will yield a similar configuration to that of
|
13 |
+
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
|
14 |
+
|
15 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
16 |
+
documentation from [`PretrainedConfig`] for more information.
|
17 |
+
|
18 |
+
|
19 |
+
Args:
|
20 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
21 |
+
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
|
22 |
+
`inputs_ids` passed when calling [`D2LLM`]
|
23 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
24 |
+
Dimension of the hidden representations.
|
25 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
26 |
+
Dimension of the MLP representations.
|
27 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
28 |
+
Number of hidden layers in the Transformer encoder.
|
29 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
30 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
31 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
32 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
33 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
34 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
35 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
36 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
37 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
38 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
39 |
+
The non-linear activation function (function or string) in the decoder.
|
40 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
41 |
+
The maximum sequence length that this model might ever be used with.
|
42 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
43 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
44 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
45 |
+
The epsilon used by the rms normalization layers.
|
46 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
47 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
48 |
+
relevant if `config.is_decoder=True`.
|
49 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
50 |
+
Whether the model's input and output word embeddings should be tied.
|
51 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
52 |
+
The base period of the RoPE embeddings.
|
53 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
54 |
+
Whether to use sliding window attention.
|
55 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
56 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
57 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
58 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
59 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
60 |
+
The dropout ratio for the attention probabilities.
|
61 |
+
|
62 |
+
```python
|
63 |
+
>>> from transformers import Qwen2Model, Qwen2Config
|
64 |
+
|
65 |
+
>>> # Initializing a Qwen2 style configuration
|
66 |
+
>>> configuration = Qwen2Config()
|
67 |
+
|
68 |
+
>>> # Initializing a model from the Qwen2-7B style configuration
|
69 |
+
>>> model = Qwen2Model(configuration)
|
70 |
+
|
71 |
+
>>> # Accessing the model configuration
|
72 |
+
>>> configuration = model.config
|
73 |
+
```"""
|
74 |
+
|
75 |
+
model_type = "qwen2"
|
76 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
77 |
+
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
vocab_size=151936,
|
81 |
+
hidden_size=4096,
|
82 |
+
intermediate_size=22016,
|
83 |
+
num_hidden_layers=32,
|
84 |
+
num_attention_heads=32,
|
85 |
+
num_key_value_heads=32,
|
86 |
+
hidden_act="silu",
|
87 |
+
max_position_embeddings=32768,
|
88 |
+
initializer_range=0.02,
|
89 |
+
rms_norm_eps=1e-6,
|
90 |
+
use_cache=True,
|
91 |
+
tie_word_embeddings=False,
|
92 |
+
rope_theta=10000.0,
|
93 |
+
use_sliding_window=False,
|
94 |
+
sliding_window=4096,
|
95 |
+
max_window_layers=28,
|
96 |
+
attention_dropout=0.0,
|
97 |
+
|
98 |
+
embedding_method="pma",
|
99 |
+
inf_seq_length=1024,
|
100 |
+
encoder_mode ="post_normal",
|
101 |
+
num_encoder_layers =0,
|
102 |
+
padding_side ="right",
|
103 |
+
|
104 |
+
keep_max_layer=32,
|
105 |
+
pma_num_heads=32,
|
106 |
+
pma_ln=True,
|
107 |
+
pma_norm=False,
|
108 |
+
pma_norm_mode="post_normal",
|
109 |
+
|
110 |
+
**kwargs,
|
111 |
+
):
|
112 |
+
self.vocab_size = vocab_size
|
113 |
+
self.max_position_embeddings = max_position_embeddings
|
114 |
+
self.hidden_size = hidden_size
|
115 |
+
self.intermediate_size = intermediate_size
|
116 |
+
self.num_hidden_layers = num_hidden_layers
|
117 |
+
self.num_attention_heads = num_attention_heads
|
118 |
+
self.use_sliding_window = use_sliding_window
|
119 |
+
self.sliding_window = sliding_window if use_sliding_window else None
|
120 |
+
self.max_window_layers = max_window_layers
|
121 |
+
|
122 |
+
# for backward compatibility
|
123 |
+
if num_key_value_heads is None:
|
124 |
+
num_key_value_heads = num_attention_heads
|
125 |
+
|
126 |
+
self.num_key_value_heads = num_key_value_heads
|
127 |
+
self.hidden_act = hidden_act
|
128 |
+
self.initializer_range = initializer_range
|
129 |
+
self.rms_norm_eps = rms_norm_eps
|
130 |
+
self.use_cache = use_cache
|
131 |
+
self.rope_theta = rope_theta
|
132 |
+
self.attention_dropout = attention_dropout
|
133 |
+
|
134 |
+
self.embedding_method = config.embedding_method
|
135 |
+
self.inf_seq_length = config.inf_seq_length
|
136 |
+
self.encoder_mode = config.encoder_mode
|
137 |
+
self.num_encoder_layers = config.num_encoder_layers
|
138 |
+
self.padding_side = config.padding_side
|
139 |
+
|
140 |
+
self.keep_max_layer = config.keep_max_layer
|
141 |
+
self.pma_num_heads = config.pma_num_heads
|
142 |
+
self.pma_ln = config.pma_ln
|
143 |
+
self.pma_norm = config.pma_norm
|
144 |
+
self.pma_norm_mode = config.pma_norm_mode
|
145 |
+
|
146 |
+
super().__init__(
|
147 |
+
tie_word_embeddings=tie_word_embeddings,
|
148 |
+
**kwargs,
|
149 |
+
)
|
modeling_d2coder.py
ADDED
@@ -0,0 +1,638 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Qwen2Config
|
2 |
+
import inspect
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
import warnings
|
6 |
+
from typing import List, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
13 |
+
from transformers import PretrainedConfig
|
14 |
+
|
15 |
+
from transformers.activations import ACT2FN
|
16 |
+
from transformers.cache_utils import Cache, DynamicCache
|
17 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
|
18 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
19 |
+
from transformers.modeling_utils import PreTrainedModel
|
20 |
+
from transformers.utils import (
|
21 |
+
add_start_docstrings,
|
22 |
+
add_start_docstrings_to_model_forward,
|
23 |
+
is_flash_attn_2_available,
|
24 |
+
is_flash_attn_greater_or_equal_2_10,
|
25 |
+
logging,
|
26 |
+
replace_return_docstrings,
|
27 |
+
)
|
28 |
+
import numpy as np
|
29 |
+
from transformers import Qwen2Config
|
30 |
+
from transformers import Qwen2ForCausalLM
|
31 |
+
import inspect
|
32 |
+
import math
|
33 |
+
import os
|
34 |
+
import warnings
|
35 |
+
from typing import List, Optional, Tuple, Union
|
36 |
+
from tqdm import tqdm, trange
|
37 |
+
import torch
|
38 |
+
import torch.nn.functional as F
|
39 |
+
import torch.utils.checkpoint
|
40 |
+
from torch import nn
|
41 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
42 |
+
|
43 |
+
from transformers.activations import ACT2FN
|
44 |
+
from transformers.cache_utils import Cache, DynamicCache
|
45 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
|
46 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
47 |
+
from transformers.modeling_utils import PreTrainedModel
|
48 |
+
from transformers.utils import (
|
49 |
+
add_start_docstrings,
|
50 |
+
add_start_docstrings_to_model_forward,
|
51 |
+
is_flash_attn_2_available,
|
52 |
+
is_flash_attn_greater_or_equal_2_10,
|
53 |
+
logging,
|
54 |
+
replace_return_docstrings,
|
55 |
+
)
|
56 |
+
import numpy as np
|
57 |
+
import torch
|
58 |
+
import os
|
59 |
+
import argparse
|
60 |
+
import json
|
61 |
+
from tqdm import tqdm
|
62 |
+
from typing import cast, List, Union, Tuple
|
63 |
+
from transformers import AutoTokenizer, AutoModel # pylint: disable=C0413
|
64 |
+
from peft import LoraConfig, get_peft_model, TaskType
|
65 |
+
import time
|
66 |
+
import torch.nn.functional as F
|
67 |
+
import sys
|
68 |
+
import time
|
69 |
+
import torch
|
70 |
+
import torch.nn as nn
|
71 |
+
import torch.nn.functional as F
|
72 |
+
import numpy as np
|
73 |
+
from tqdm import tqdm, trange
|
74 |
+
from collections import defaultdict
|
75 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, AutoConfig
|
76 |
+
import torch.distributed as dist
|
77 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
78 |
+
import sys
|
79 |
+
import torch
|
80 |
+
import torch.nn as nn
|
81 |
+
import torch.nn.functional as F
|
82 |
+
import math
|
83 |
+
import re
|
84 |
+
|
85 |
+
|
86 |
+
# PMA部分 post_normal
|
87 |
+
class MAB_POST(nn.Module):
|
88 |
+
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
|
89 |
+
super(MAB_POST, self).__init__()
|
90 |
+
self.dim_V = dim_V
|
91 |
+
self.num_heads = num_heads
|
92 |
+
self.fc_q = nn.Linear(dim_Q, dim_V)
|
93 |
+
self.fc_k = nn.Linear(dim_K, dim_V)
|
94 |
+
self.fc_v = nn.Linear(dim_K, dim_V)
|
95 |
+
|
96 |
+
if ln:
|
97 |
+
self.ln0 = nn.LayerNorm(dim_V)
|
98 |
+
self.ln1 = nn.LayerNorm(dim_V)
|
99 |
+
self.fc_o = nn.Linear(dim_V, dim_V)
|
100 |
+
nn.init.xavier_uniform_(self.fc_q.weight)
|
101 |
+
nn.init.xavier_uniform_(self.fc_k.weight)
|
102 |
+
nn.init.xavier_uniform_(self.fc_v.weight)
|
103 |
+
nn.init.xavier_uniform_(self.fc_o.weight)
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
# Q(bs, 1, emb), pad_mask (bs, seq) Post-LN
|
108 |
+
def forward(self, Q, K, pad_mask=None):
|
109 |
+
|
110 |
+
Q_ = self.fc_q(Q)
|
111 |
+
K_, V_ = self.fc_k(K), self.fc_v(K)
|
112 |
+
|
113 |
+
dim_split = self.dim_V // self.num_heads
|
114 |
+
Q_ = torch.cat(Q_.split(dim_split, 2), 0) # (bs* num_head, 1, emb)
|
115 |
+
K_ = torch.cat(K_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
116 |
+
V_ = torch.cat(V_.split(dim_split, 2), 0)
|
117 |
+
|
118 |
+
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, 1, seq)
|
119 |
+
score = Q_.bmm(K_.transpose(1,2))/math.sqrt(self.dim_V)
|
120 |
+
score = score.masked_fill(pad_mask == 0, -1e12)
|
121 |
+
A = torch.softmax(score, 2) # (bs*num_head, 1, seq)
|
122 |
+
A = A * pad_mask
|
123 |
+
O = torch.cat(A.bmm(V_).split(Q.size(0), 0), 2) # (bs, 1, emb)
|
124 |
+
O = Q + O
|
125 |
+
# O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2)
|
126 |
+
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
|
127 |
+
O = O + F.relu(self.fc_o(O))
|
128 |
+
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
|
129 |
+
return O
|
130 |
+
|
131 |
+
|
132 |
+
# PMA部分 pre_normal
|
133 |
+
class MAB_PRE_NORMAL(nn.Module):
|
134 |
+
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
|
135 |
+
super(MAB_PRE_NORMAL, self).__init__()
|
136 |
+
self.dim_V = dim_V
|
137 |
+
self.num_heads = num_heads
|
138 |
+
self.fc_q = nn.Linear(dim_Q, dim_V)
|
139 |
+
self.fc_k = nn.Linear(dim_K, dim_V)
|
140 |
+
self.fc_v = nn.Linear(dim_K, dim_V)
|
141 |
+
|
142 |
+
if ln:
|
143 |
+
self.ln_q = nn.LayerNorm(dim_V)
|
144 |
+
self.ln_kv = nn.LayerNorm(dim_V)
|
145 |
+
self.ln_o = nn.LayerNorm(dim_V)
|
146 |
+
self.ln_final = nn.LayerNorm(dim_V)
|
147 |
+
|
148 |
+
self.fc_o = nn.Linear(dim_V, dim_V)
|
149 |
+
nn.init.xavier_uniform_(self.fc_q.weight)
|
150 |
+
nn.init.xavier_uniform_(self.fc_k.weight)
|
151 |
+
nn.init.xavier_uniform_(self.fc_v.weight)
|
152 |
+
nn.init.xavier_uniform_(self.fc_o.weight)
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
# pad_mask (bs, seq) Pre-LN 正常架构
|
158 |
+
def forward(self, Q, K, pad_mask=None):
|
159 |
+
|
160 |
+
Q_ = Q if getattr(self, 'ln_q', None) is None else self.ln_q(Q)
|
161 |
+
K_ = K if getattr(self, 'ln_kv', None) is None else self.ln_kv(K)
|
162 |
+
|
163 |
+
Q_ = self.fc_q(Q_)
|
164 |
+
K_, V_ = self.fc_k(K_), self.fc_v(K_)
|
165 |
+
|
166 |
+
dim_split = self.dim_V // self.num_heads
|
167 |
+
|
168 |
+
|
169 |
+
Q_ = torch.cat(Q_.split(dim_split, 2), 0) # (bs* num_head, 1, emb)
|
170 |
+
K_ = torch.cat(K_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
171 |
+
V_ = torch.cat(V_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
172 |
+
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, 1, seq)
|
173 |
+
score = Q_.bmm(K_.transpose(1,2))/math.sqrt(self.dim_V)
|
174 |
+
score = score.masked_fill(pad_mask == 0, -1e12)
|
175 |
+
A = torch.softmax(score, 2) # (bs*num_head, 1, seq)
|
176 |
+
A = A * pad_mask
|
177 |
+
|
178 |
+
|
179 |
+
O = torch.cat(A.bmm(V_).split(Q.size(0), 0), 2)
|
180 |
+
O = Q + O
|
181 |
+
|
182 |
+
O_ = O if getattr(self, 'ln_o', None) is None else self.ln_o(O) # O的layernorm分支
|
183 |
+
O_ = O + F.relu(self.fc_o(O_))
|
184 |
+
return O_ if getattr(self, 'ln_final', None) is None else self.ln_final(O_)
|
185 |
+
|
186 |
+
# PMA部分 pre_gptj
|
187 |
+
class MAB_PRE_GPTJ(nn.Module):
|
188 |
+
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
|
189 |
+
super(MAB_PRE_GPTJ, self).__init__()
|
190 |
+
self.dim_V = dim_V
|
191 |
+
self.num_heads = num_heads
|
192 |
+
self.fc_q = nn.Linear(dim_Q, dim_V)
|
193 |
+
self.fc_k = nn.Linear(dim_K, dim_V)
|
194 |
+
self.fc_v = nn.Linear(dim_K, dim_V)
|
195 |
+
self.fc_o = nn.Linear(dim_V, dim_V)
|
196 |
+
|
197 |
+
nn.init.xavier_uniform_(self.fc_q.weight)
|
198 |
+
nn.init.xavier_uniform_(self.fc_k.weight)
|
199 |
+
nn.init.xavier_uniform_(self.fc_v.weight)
|
200 |
+
nn.init.xavier_uniform_(self.fc_o.weight)
|
201 |
+
if ln:
|
202 |
+
self.ln_q = nn.LayerNorm(dim_V)
|
203 |
+
self.ln_kv = nn.LayerNorm(dim_V)
|
204 |
+
self.ln_final = nn.LayerNorm(dim_V)
|
205 |
+
|
206 |
+
# pad_mask (bs, seq)
|
207 |
+
def forward(self, Q, K, pad_mask=None):
|
208 |
+
|
209 |
+
# layernorm
|
210 |
+
Q_ = Q if getattr(self, 'ln_q', None) is None else self.ln_q(Q)
|
211 |
+
K_ = K if getattr(self, 'ln_kv', None) is None else self.ln_kv(K)
|
212 |
+
|
213 |
+
|
214 |
+
Q1 = self.fc_q(Q_)
|
215 |
+
K1, V1 = self.fc_k(K_), self.fc_v(K_)
|
216 |
+
dim_split = self.dim_V // self.num_heads
|
217 |
+
|
218 |
+
|
219 |
+
Q1 = torch.cat(Q1.split(dim_split, 2), 0) # (bs* num_head, 1, emb)
|
220 |
+
K1 = torch.cat(K1.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
221 |
+
V1 = torch.cat(V1.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
222 |
+
|
223 |
+
|
224 |
+
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, 1, seq)
|
225 |
+
score = Q1.bmm(K1.transpose(1,2))/math.sqrt(self.dim_V)
|
226 |
+
score = score.masked_fill(pad_mask == 0, -1e12)
|
227 |
+
A = torch.softmax(score, 2) # (bs*num_head, 1, seq)
|
228 |
+
A = A * pad_mask
|
229 |
+
O1 = torch.cat(A.bmm(V1).split(Q.size(0), 0), 2) # (bs, 1, emb)
|
230 |
+
|
231 |
+
O2 = F.relu(self.fc_o(Q_)) # (bs, 1, emb)
|
232 |
+
|
233 |
+
O_final = Q + O1 + O2
|
234 |
+
|
235 |
+
return O_final if getattr(self, 'ln_final', None) is None else self.ln_final(O_final)
|
236 |
+
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
class PMA(nn.Module):
|
241 |
+
def __init__(self, dim, num_heads, num_seeds, ln=False, pma_mode=None):
|
242 |
+
super(PMA, self).__init__()
|
243 |
+
self.S = nn.Parameter(torch.Tensor(1, num_seeds, dim))
|
244 |
+
nn.init.xavier_uniform_(self.S)
|
245 |
+
if pma_mode == 'post_normal':
|
246 |
+
self.mab = MAB_POST(dim, dim, dim, num_heads, ln=ln)
|
247 |
+
elif pma_mode == 'pre_normal':
|
248 |
+
self.mab = MAB_PRE_NORMAL(dim, dim, dim, num_heads, ln=ln)
|
249 |
+
elif pma_mode == 'pre_gptj':
|
250 |
+
self.mab = MAB_PRE_GPTJ(dim, dim, dim, num_heads, ln=ln)
|
251 |
+
else:
|
252 |
+
raise ValueError(f"Error, the pma_mode {pma_mode} is not implemented !")
|
253 |
+
# X: (bs, seq, emb), pad_mask: (bs, seq)
|
254 |
+
def forward(self, X, pad_mask):
|
255 |
+
if self.S.dtype != torch.bfloat16:
|
256 |
+
X = X.float()
|
257 |
+
return self.mab(self.S.repeat(X.size(0), 1, 1), X, pad_mask)
|
258 |
+
|
259 |
+
|
260 |
+
# 普通双向transformer encoder, post_normal
|
261 |
+
class EncoderLayer_POST(nn.Module):
|
262 |
+
def __init__(self, dim_V, num_heads, ln=False):
|
263 |
+
super(EncoderLayer_POST, self).__init__()
|
264 |
+
self.dim_V = dim_V
|
265 |
+
self.num_heads = num_heads
|
266 |
+
self.fc_q = nn.Linear(dim_V, dim_V)
|
267 |
+
self.fc_k = nn.Linear(dim_V, dim_V)
|
268 |
+
self.fc_v = nn.Linear(dim_V, dim_V)
|
269 |
+
self.fc_o = nn.Linear(dim_V, dim_V)
|
270 |
+
|
271 |
+
|
272 |
+
nn.init.xavier_uniform_(self.fc_q.weight)
|
273 |
+
nn.init.xavier_uniform_(self.fc_k.weight)
|
274 |
+
nn.init.xavier_uniform_(self.fc_v.weight)
|
275 |
+
nn.init.xavier_uniform_(self.fc_o.weight)
|
276 |
+
|
277 |
+
if ln:
|
278 |
+
self.ln0 = nn.LayerNorm(dim_V)
|
279 |
+
self.ln1 = nn.LayerNorm(dim_V)
|
280 |
+
|
281 |
+
# Q:(bs, seq, emb), pad_mask:(bs, seq)
|
282 |
+
def forward(self, Q, pad_mask=None):
|
283 |
+
|
284 |
+
Q_, K_, V_ = self.fc_q(Q), self.fc_k(Q), self.fc_v(Q)
|
285 |
+
|
286 |
+
dim_split = self.dim_V // self.num_heads
|
287 |
+
Q_ = torch.cat(Q_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
288 |
+
K_ = torch.cat(K_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
289 |
+
V_ = torch.cat(V_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
290 |
+
|
291 |
+
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, seq, seq)
|
292 |
+
|
293 |
+
score = Q_.bmm(K_.transpose(1,2))/math.sqrt(self.dim_V)
|
294 |
+
score = score.masked_fill(pad_mask == 0, -1e12)
|
295 |
+
A = torch.softmax(score, 2) # (bs*num_head, seq, seq)
|
296 |
+
A = A * pad_mask # (bs*num_head, seq, seq)
|
297 |
+
|
298 |
+
O = torch.cat(A.bmm(V_).split(Q.size(0), 0), 2) # (bs, seq, emb)
|
299 |
+
O = Q + O
|
300 |
+
|
301 |
+
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
|
302 |
+
O = O + F.relu(self.fc_o(O))
|
303 |
+
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
|
304 |
+
return O
|
305 |
+
|
306 |
+
|
307 |
+
# 普通双向transformer encoder, pre LN norm
|
308 |
+
class EncoderLayer_PRE_NORMAL(nn.Module):
|
309 |
+
def __init__(self, dim_V, num_heads, ln=False):
|
310 |
+
super(EncoderLayer_PRE_NORMAL, self).__init__()
|
311 |
+
self.dim_V = dim_V
|
312 |
+
self.num_heads = num_heads
|
313 |
+
self.fc_q = nn.Linear(dim_V, dim_V)
|
314 |
+
self.fc_k = nn.Linear(dim_V, dim_V)
|
315 |
+
self.fc_v = nn.Linear(dim_V, dim_V)
|
316 |
+
self.fc_o = nn.Linear(dim_V, dim_V)
|
317 |
+
|
318 |
+
|
319 |
+
nn.init.xavier_uniform_(self.fc_q.weight)
|
320 |
+
nn.init.xavier_uniform_(self.fc_k.weight)
|
321 |
+
nn.init.xavier_uniform_(self.fc_v.weight)
|
322 |
+
nn.init.xavier_uniform_(self.fc_o.weight)
|
323 |
+
|
324 |
+
if ln:
|
325 |
+
self.ln_qkv = nn.LayerNorm(dim_V)
|
326 |
+
self.ln_o = nn.LayerNorm(dim_V)
|
327 |
+
|
328 |
+
# Q:(bs, seq, emb), pad_mask:(bs, seq)
|
329 |
+
def forward(self, Q, pad_mask=None):
|
330 |
+
|
331 |
+
Q_ = Q if getattr(self, 'ln_qkv', None) is None else self.ln_qkv(Q) # layernorm
|
332 |
+
|
333 |
+
Q_, K_, V_ = self.fc_q(Q_), self.fc_k(Q_), self.fc_v(Q_)
|
334 |
+
dim_split = self.dim_V // self.num_heads
|
335 |
+
Q_ = torch.cat(Q_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
336 |
+
K_ = torch.cat(K_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
337 |
+
V_ = torch.cat(V_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
338 |
+
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, seq, seq)
|
339 |
+
score = Q_.bmm(K_.transpose(1,2))/math.sqrt(self.dim_V)
|
340 |
+
score = score.masked_fill(pad_mask == 0, -1e12)
|
341 |
+
A = torch.softmax(score, 2) # (bs*num_head, seq, seq)
|
342 |
+
A = A * pad_mask
|
343 |
+
|
344 |
+
O = torch.cat(A.bmm(V_).split(Q.size(0), 0), 2)
|
345 |
+
O = Q + O
|
346 |
+
|
347 |
+
O_ = O if getattr(self, 'ln_o', None) is None else self.ln_o(O) # O的layernorm分支
|
348 |
+
|
349 |
+
O_ = O + F.relu(self.fc_o(O_))
|
350 |
+
|
351 |
+
return O_
|
352 |
+
|
353 |
+
# 普通双向transformer encoder, pre LN gptj
|
354 |
+
class EncoderLayer_PRE_GPTJ(nn.Module):
|
355 |
+
def __init__(self, dim_V, num_heads, ln=False):
|
356 |
+
super(EncoderLayer_PRE_GPTJ, self).__init__()
|
357 |
+
self.dim_V = dim_V
|
358 |
+
self.num_heads = num_heads
|
359 |
+
self.fc_q = nn.Linear(dim_V, dim_V)
|
360 |
+
self.fc_k = nn.Linear(dim_V, dim_V)
|
361 |
+
self.fc_v = nn.Linear(dim_V, dim_V)
|
362 |
+
self.fc_o = nn.Linear(dim_V, dim_V)
|
363 |
+
|
364 |
+
|
365 |
+
nn.init.xavier_uniform_(self.fc_q.weight)
|
366 |
+
nn.init.xavier_uniform_(self.fc_k.weight)
|
367 |
+
nn.init.xavier_uniform_(self.fc_v.weight)
|
368 |
+
nn.init.xavier_uniform_(self.fc_o.weight)
|
369 |
+
|
370 |
+
if ln:
|
371 |
+
self.ln_qkv = nn.LayerNorm(dim_V)
|
372 |
+
|
373 |
+
# Q:(bs, seq, emb), pad_mask:(bs, seq)
|
374 |
+
def forward(self, Q, pad_mask=None):
|
375 |
+
|
376 |
+
Q_ = Q if getattr(self, 'ln_qkv', None) is None else self.ln_qkv(Q) # layernorm
|
377 |
+
|
378 |
+
|
379 |
+
Q1, K1, V1 = self.fc_q(Q_), self.fc_k(Q_), self.fc_v(Q_)
|
380 |
+
dim_split = self.dim_V // self.num_heads
|
381 |
+
Q1 = torch.cat(Q1.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
382 |
+
K1 = torch.cat(K1.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
383 |
+
V1 = torch.cat(V1.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
384 |
+
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, seq, seq)
|
385 |
+
score = Q1.bmm(K1.transpose(1,2))/math.sqrt(self.dim_V)
|
386 |
+
score = score.masked_fill(pad_mask == 0, -1e12)
|
387 |
+
A = torch.softmax(score, 2) # (bs*num_head, seq, seq)
|
388 |
+
A = A * pad_mask
|
389 |
+
O1 = torch.cat(A.bmm(V1).split(Q.size(0), 0), 2) # (bs, seq, emb)
|
390 |
+
|
391 |
+
O2 = F.relu(self.fc_o(Q_))
|
392 |
+
|
393 |
+
O_final = Q + O1 + O2
|
394 |
+
|
395 |
+
return O_final
|
396 |
+
|
397 |
+
|
398 |
+
class Encoder(nn.Module):
|
399 |
+
def __init__(self, emb_dim, num_heads, ln, encoder_mode, num_encoder_layers):
|
400 |
+
super(Encoder, self).__init__()
|
401 |
+
self.num_encoder_layers = num_encoder_layers
|
402 |
+
if encoder_mode == 'post_normal':
|
403 |
+
self.layers = nn.ModuleList([EncoderLayer_POST(dim_V=emb_dim, num_heads=num_heads, ln=ln)
|
404 |
+
for _ in range(num_encoder_layers)])
|
405 |
+
elif encoder_mode == 'pre_normal':
|
406 |
+
self.layers = nn.ModuleList([EncoderLayer_PRE_NORMAL(dim_V=emb_dim, num_heads=num_heads, ln=ln)
|
407 |
+
for _ in range(num_encoder_layers)])
|
408 |
+
elif encoder_mode == 'pre_gptj':
|
409 |
+
self.layers = nn.ModuleList([EncoderLayer_PRE_GPTJ(dim_V=emb_dim, num_heads=num_heads, ln=ln)
|
410 |
+
for _ in range(num_encoder_layers)])
|
411 |
+
else:
|
412 |
+
raise ValueError(f"Error, the encoder_mode {encoder_mode} is not implemented !")
|
413 |
+
|
414 |
+
# X:(bs, seq, emb), mask: (bs, seq)
|
415 |
+
def forward(self, X, mask):
|
416 |
+
if self.num_encoder_layers == 0:
|
417 |
+
return X
|
418 |
+
if self.layers[0].fc_q.weight.dtype != torch.bfloat16:
|
419 |
+
X = X.float()
|
420 |
+
for layer in self.layers:
|
421 |
+
X = layer(X, mask)
|
422 |
+
|
423 |
+
return X
|
424 |
+
|
425 |
+
class D2LLMConfig(PretrainedConfig):
|
426 |
+
model_type = "qwen2"
|
427 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
428 |
+
|
429 |
+
def __init__(
|
430 |
+
self,
|
431 |
+
vocab_size=151936,
|
432 |
+
hidden_size=4096,
|
433 |
+
intermediate_size=22016,
|
434 |
+
num_hidden_layers=32,
|
435 |
+
num_attention_heads=32,
|
436 |
+
num_key_value_heads=32,
|
437 |
+
hidden_act="silu",
|
438 |
+
max_position_embeddings=32768,
|
439 |
+
initializer_range=0.02,
|
440 |
+
rms_norm_eps=1e-6,
|
441 |
+
use_cache=True,
|
442 |
+
tie_word_embeddings=False,
|
443 |
+
rope_theta=10000.0,
|
444 |
+
use_sliding_window=False,
|
445 |
+
sliding_window=4096,
|
446 |
+
max_window_layers=28,
|
447 |
+
attention_dropout=0.0,
|
448 |
+
**kwargs,
|
449 |
+
):
|
450 |
+
self.vocab_size = vocab_size
|
451 |
+
self.max_position_embeddings = max_position_embeddings
|
452 |
+
self.hidden_size = hidden_size
|
453 |
+
self.intermediate_size = intermediate_size
|
454 |
+
self.num_hidden_layers = num_hidden_layers
|
455 |
+
self.num_attention_heads = num_attention_heads
|
456 |
+
self.use_sliding_window = use_sliding_window
|
457 |
+
self.sliding_window = sliding_window if use_sliding_window else None
|
458 |
+
self.max_window_layers = max_window_layers
|
459 |
+
|
460 |
+
# for backward compatibility
|
461 |
+
if num_key_value_heads is None:
|
462 |
+
num_key_value_heads = num_attention_heads
|
463 |
+
|
464 |
+
self.num_key_value_heads = num_key_value_heads
|
465 |
+
self.hidden_act = hidden_act
|
466 |
+
self.initializer_range = initializer_range
|
467 |
+
self.rms_norm_eps = rms_norm_eps
|
468 |
+
self.use_cache = use_cache
|
469 |
+
self.rope_theta = rope_theta
|
470 |
+
self.attention_dropout = attention_dropout
|
471 |
+
|
472 |
+
super().__init__(
|
473 |
+
tie_word_embeddings=tie_word_embeddings,
|
474 |
+
**kwargs,
|
475 |
+
)
|
476 |
+
|
477 |
+
|
478 |
+
class D2Coder(PreTrainedModel):
|
479 |
+
|
480 |
+
def __init__(self, config):
|
481 |
+
super().__init__(config)
|
482 |
+
self.plm_model = Qwen2ForCausalLM(config)
|
483 |
+
|
484 |
+
self.embedding_method = config.embedding_method
|
485 |
+
self.inf_seq_length = config.inf_seq_length
|
486 |
+
self.encoder_mode = config.encoder_mode
|
487 |
+
self.num_encoder_layers = config.num_encoder_layers
|
488 |
+
self.padding_side = config.padding_side
|
489 |
+
|
490 |
+
self.keep_max_layer = config.keep_max_layer
|
491 |
+
self.emb_dim = self.plm_model.model.embed_tokens.weight.size(1)
|
492 |
+
self.num_heads = config.pma_num_heads
|
493 |
+
self.ln = config.pma_ln
|
494 |
+
self.norm = config.pma_norm
|
495 |
+
self.pma_mode = config.pma_norm_mode
|
496 |
+
self.encoder = Encoder(self.emb_dim, self.num_heads, self.ln, self.encoder_mode, self.num_encoder_layers)
|
497 |
+
self.mha_pma = PMA(self.emb_dim, self.num_heads, 1, ln=self.ln, pma_mode=self.pma_mode)
|
498 |
+
|
499 |
+
def forward(self, inputs_all, mode, args):
|
500 |
+
# output_embeddings_a = self.get_sentence_embedding(self.embedding_method, **inputs_a)
|
501 |
+
|
502 |
+
# output_embeddings_b = self.get_sentence_embedding(self.embedding_method, **inputs_b) # (bs, emb_size)
|
503 |
+
bs = self.args.batch_size
|
504 |
+
if mode == 'train':
|
505 |
+
output_embeddings_all = self.get_sentence_embedding(self.embedding_method, **inputs_all).reshape(2+self.args.neg_K, bs, -1) # (2+K, bs, emb_size)
|
506 |
+
# if self.to_compress:
|
507 |
+
# output_embeddings_all = self.projector(output_embeddings_all)
|
508 |
+
|
509 |
+
output_embeddings_hardneg = output_embeddings_all[2:] # (neg_K, bs, emb)
|
510 |
+
hn_norm = torch.nn.functional.normalize(output_embeddings_hardneg, p=2, dim=-1)
|
511 |
+
elif mode == 'eval':
|
512 |
+
output_embeddings_all = self.get_sentence_embedding(self.embedding_method, **inputs_all).reshape(2, bs, -1) # (2, bs, emb_size)
|
513 |
+
# if self.to_compress:
|
514 |
+
# output_embeddings_all = self.projector(output_embeddings_all)
|
515 |
+
else:
|
516 |
+
raise ValueError('Error of mode value')
|
517 |
+
|
518 |
+
output_embeddings_a = output_embeddings_all[0] # (bs, emb)
|
519 |
+
output_embeddings_b = output_embeddings_all[1] # (bs, emb)
|
520 |
+
a_norm = torch.nn.functional.normalize(output_embeddings_a, p=2, dim=-1)
|
521 |
+
b_norm = torch.nn.functional.normalize(output_embeddings_b, p=2, dim=-1)
|
522 |
+
|
523 |
+
|
524 |
+
|
525 |
+
b_cross_gpus = gather_across_devices(output_embeddings_b, args.global_rank, self.world_size)
|
526 |
+
b_norm_cross_gpus = torch.nn.functional.normalize(b_cross_gpus, p=2, dim=-1) # ()
|
527 |
+
|
528 |
+
|
529 |
+
assert a_norm.size(0) == b_norm.size(0)
|
530 |
+
bs = output_embeddings_a.size(0)
|
531 |
+
# in-batch计算部分
|
532 |
+
output_in_batch_local_gpu = torch.matmul(a_norm, b_norm.t())
|
533 |
+
output_in_batch_global_gpu = torch.matmul(a_norm, b_norm_cross_gpus.t())
|
534 |
+
|
535 |
+
if mode == 'train':
|
536 |
+
# hard neg计算部分
|
537 |
+
pos_neg_emb = torch.cat([b_norm.unsqueeze(0), hn_norm], dim=0) # (1+neg_K, bs, emb)
|
538 |
+
output_hardneg_specific_task = torch.matmul(a_norm.unsqueeze(1), pos_neg_emb.permute(1,2,0)).squeeze() # (bs, 1+neg_K)
|
539 |
+
# output_pos_hardneg_rep_specific_task = torch.cat([output_embeddings_a.unsqueeze(0).expand(pos_neg_emb.size(0),-1,-1), pos_neg_emb],dim=-1)
|
540 |
+
|
541 |
+
elif mode == 'eval':
|
542 |
+
output_hardneg_specific_task = None
|
543 |
+
output_pos_hardneg_rep_specific_task = None
|
544 |
+
|
545 |
+
return output_in_batch_local_gpu, output_in_batch_global_gpu, output_hardneg_specific_task # (bs, bs) (bs, world_size*bs), (bs, 1+neg_K)
|
546 |
+
# return output_in_batch_specific_task, output_hardneg_specific_task, output_pos_hardneg_rep_specific_task
|
547 |
+
|
548 |
+
def last_embedding(self, A, index):
|
549 |
+
bs, seq, emb = A.size()
|
550 |
+
res = A[torch.arange(bs), index, :]
|
551 |
+
return res
|
552 |
+
|
553 |
+
def mean_embedding(self, A, mask):
|
554 |
+
bs, seq, emb = A.size()
|
555 |
+
res = (A * (mask.unsqueeze(-1))).sum(1) / (mask.sum(1).unsqueeze(-1))
|
556 |
+
return res
|
557 |
+
|
558 |
+
# A (bs, seq, emb_size), mask (bs, 1, seq)
|
559 |
+
def weighted_embedding(self, A, mask):
|
560 |
+
weights = (torch.arange(start=1, end=A.size(1) + 1).unsqueeze(0).unsqueeze(-1).expand(A.size()).float()).to(A.device)
|
561 |
+
input_mask_expanded = (mask.squeeze(1).unsqueeze(-1).expand(A.size()).float()).to(A.device)
|
562 |
+
sum_embedding = torch.sum(A * input_mask_expanded * weights, dim=1)
|
563 |
+
sum_mask = torch.sum(input_mask_expanded * weights, dim=1)
|
564 |
+
weighted_embedding = sum_embedding / sum_mask
|
565 |
+
|
566 |
+
return weighted_embedding
|
567 |
+
|
568 |
+
def pma_embedding(self, A, mask):
|
569 |
+
res = self.mha_pma(A, mask).squeeze(1)
|
570 |
+
return res
|
571 |
+
|
572 |
+
|
573 |
+
def get_sentence_embedding(self, embedding_method, **inputs):
|
574 |
+
outputs = self.plm_model(inputs['input_ids'], inputs['attention_mask'], output_hidden_states=True)
|
575 |
+
if embedding_method == 'last':
|
576 |
+
embedding = outputs.hidden_states[self.keep_max_layer]
|
577 |
+
index = inputs['attention_mask'].sum(-1).long() - 1
|
578 |
+
res_embedding = self.last_embedding(embedding, index)
|
579 |
+
elif embedding_method == 'mean':
|
580 |
+
embedding = outputs.hidden_states[self.keep_max_layer]
|
581 |
+
res_embedding = self.mean_embedding(embedding, inputs['attention_mask'])
|
582 |
+
elif embedding_method == 'weighted':
|
583 |
+
embedding = outputs.hidden_states[self.keep_max_layer]
|
584 |
+
res_embedding = self.weighted_embedding(embedding, inputs['attention_mask'])
|
585 |
+
elif embedding_method == 'pma':
|
586 |
+
embedding = outputs.hidden_states[self.keep_max_layer] # Qwen.hidden_state: (33, bs, seq, emb)
|
587 |
+
attention_mask = inputs['attention_mask']
|
588 |
+
embedding = self.encoder(embedding, attention_mask)
|
589 |
+
res_embedding = self.pma_embedding(embedding, attention_mask) # embedding: (bs, seq, emb), inputs['attention_mask']: (bs, seq)
|
590 |
+
else:
|
591 |
+
logger.debug('Error, no {} way to obtain embbedings'.format(embedding_method))
|
592 |
+
|
593 |
+
if not self.norm:
|
594 |
+
res_embedding = torch.nn.functional.normalize(res_embedding, p=2.0, dim=-1, eps=1e-12, out=None)
|
595 |
+
return res_embedding
|
596 |
+
|
597 |
+
|
598 |
+
|
599 |
+
def encode(self, tokenizer, sentences, batch_size=32, convert_to_numpy=True,
|
600 |
+
convert_to_tensor=False, show_progress_bar=True, max_seq_length=None, **kwargs):
|
601 |
+
|
602 |
+
if max_seq_length is None:
|
603 |
+
max_seq_length = self.inf_seq_length
|
604 |
+
|
605 |
+
input_is_string = False
|
606 |
+
if isinstance(sentences, str) or not hasattr(sentences, "__len__"):
|
607 |
+
sentences = [sentences]
|
608 |
+
input_is_string = True
|
609 |
+
|
610 |
+
|
611 |
+
all_embeddings = []
|
612 |
+
length_sorted_idx = np.argsort([-len(s) for s in sentences])
|
613 |
+
sentences_sorted = [sentences[idx] for idx in length_sorted_idx] # 大到小重排
|
614 |
+
with torch.no_grad():
|
615 |
+
for start_index in trange(0, len(sentences), batch_size, desc="Batches", disable=not show_progress_bar):
|
616 |
+
sentences_batch = sentences_sorted[start_index: start_index + batch_size]
|
617 |
+
# Compute sentences embeddingsz
|
618 |
+
with torch.no_grad():
|
619 |
+
inputs = tokenizer(sentences_batch, padding=True, truncation=True, max_length=max_seq_length, add_special_tokens=False, return_tensors='pt').to(self.plm_model.device)
|
620 |
+
embeddings = self.get_sentence_embedding(self.embedding_method, **inputs)
|
621 |
+
# if self.to_compress:
|
622 |
+
# embeddings = self.projector(embeddings)
|
623 |
+
embeddings = embeddings.detach()
|
624 |
+
if convert_to_numpy:
|
625 |
+
if embeddings.dtype == torch.bfloat16:
|
626 |
+
embeddings = embeddings.cpu().to(torch.float32)
|
627 |
+
else:
|
628 |
+
embeddings = embeddings.cpu()
|
629 |
+
all_embeddings.extend(embeddings)
|
630 |
+
all_embeddings = [all_embeddings[idx] for idx in np.argsort(length_sorted_idx)]
|
631 |
+
if convert_to_tensor:
|
632 |
+
all_embeddings = torch.stack(all_embeddings)
|
633 |
+
elif convert_to_numpy:
|
634 |
+
all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
|
635 |
+
|
636 |
+
if input_is_string:
|
637 |
+
all_embeddings = all_embeddings[0]
|
638 |
+
return all_embeddings
|