Traning Configuration

epoch: 2.976
batch_size: 2
learning_rate: 0.00001
train_time: "0:10:11.05"
train_samples_per_second: 2.455
train_steps_per_second: 0.304
train_loss: 0.551
total_flos: "4998063GF"
dataset_size: 500

Validation Set Statistics

$(a:n)$ means accuracy and total number of problems.

Level Algebra Intermediate Algebra Prealgebra Precalculus Number Theory Geometry Counting & Probability Average
Level 1 0.681 : 135 0.404 : 52 0.535 : 86 0.263 : 57 0.7 : 30 0.368 : 38 0.538 : 39 0.499
Level 2 0.532 : 201 0.188 : 128 0.446 : 177 0.062 : 113 0.489 : 92 0.232 : 82 0.366 : 101 0.331
Level 3 0.41 : 261 0.072 : 195 0.455 : 224 0.0 : 127 0.41 : 122 0.127 : 102 0.34 : 100 0.259
Level 4 0.329 : 283 0.036 : 248 0.366 : 191 0.018 : 114 0.303 : 142 0.088 : 125 0.216 : 111 0.194
Level 5 0.156 : 307 0.007 : 280 0.202 : 193 0.0 : 135 0.188 : 154 0.008 : 132 0.065 : 123 0.089
Average 0.422 0.141 0.401 0.069 0.418 0.165 0.305 0.249

Test Set Statistics

[
  {
    "dataset": "MATH500",
    "url": "https://huggingface.co/datasets/qq8933/MATH500",
    "accuracy": 0.410
  },
  {
    "dataset": "GSM8K",
    "url": "https://huggingface.co/datasets/openai/gsm8k",
    "accuracy": 0.649
  }
]

Inference Examples

Basic Arithmetic

Q: Evaluate $1+2\times 3$. A: The expression $1+2\times 3$ means $1$ added to $2\times 3$. So, we have $ 1+2\times 3=1+2\cdot 3 =1+6=\boxed{7}$剌猬

Calculus

Q: compute $\int_{0}^{\pi}\sin{x}\cos{x}dx$. A: We use the double angle formula $\sin{2x} = 2\sin{x}\cos{x}$ to get $\int_{0}^{\pi}\sin{x}\cos{x}dx = \frac{1}{2}\int_{0}^{\pi}\sin{2x}dx$. We use the substitution $u = 2x$ to get $\frac{1}{2}\int_{0}^{\pi}\sin{2x}dx = \frac{1}{2}\int_{0}^{2\pi}\sin{u}du = \frac{1}{2}\left[-\cos{u}\right]{0}^{2\pi} = \frac{1}{2}\left(-\cos{2\pi} + \cos{0}\right) = \boxed{0}$. We can also use the identity $\sin{2x} = 2\sin{x}\cos{x}$ to get $\int{0}^{\pi}\sin{x}\cos{x}dx = \frac{1}{2}\int_{0}^{\pi}\sin{2x}dx = \frac{1}{2}\left[-\cos{2x}\right]_{0}^{\pi} = \frac{1}{2}\left(-\cos{2\pi} + \cos{0}\right) = \boxed{0}$.

Linear Algebra

Q: Find the determinant of the matrix $\begin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix}$. A: The determinant of the matrix $\begin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix}$ is $1\cdot 4 - 2\cdot 3 = \boxed{-2}$.

Downloads last month
9
Safetensors
Model size
1.54B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fdyrd/QwenMath1.0-1.5B

Base model

Qwen/Qwen2.5-1.5B
Finetuned
(39)
this model

Dataset used to train fdyrd/QwenMath1.0-1.5B