Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: teknium/OpenHermes-2.5-Mistral-7B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 5249a1b83c51e8f1_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/5249a1b83c51e8f1_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
ddp_find_unused_parameters: false
distributed_type: ddp
early_stopping_patience: null
env:
  CUDA_VISIBLE_DEVICES: 0,1
  MASTER_ADDR: localhost
  MASTER_PORT: '29500'
  NCCL_DEBUG: INFO
  NCCL_IB_DISABLE: '0'
  NCCL_P2P_DISABLE: '0'
  NCCL_P2P_LEVEL: NVL
  PYTORCH_CUDA_ALLOC_CONF: max_split_size_mb:512, garbage_collection_threshold:0.8
  WORLD_SIZE: '2'
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: false
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: true
hub_model_id: fats-fme/b0ffab7b-58fa-475f-950e-ba65c623bb7f
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory_MB: 65000
max_steps: -1
micro_batch_size: 2
mlflow_experiment_name: /tmp/5249a1b83c51e8f1_train_data.json
model_type: AutoModelForCausalLM
num_devices: 2
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 4056
special_tokens:
  pad_token: <|im_end|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b0ffab7b-58fa-475f-950e-ba65c623bb7f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b0ffab7b-58fa-475f-950e-ba65c623bb7f
warmup_steps: 20
world_size: 2
xformers_attention: true

b0ffab7b-58fa-475f-950e-ba65c623bb7f

This model is a fine-tuned version of teknium/OpenHermes-2.5-Mistral-7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1233

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
5.8683 0.0004 1 0.8921
4.6862 0.2503 661 0.4859
1.5248 0.5006 1322 0.2775
1.0347 0.7509 1983 0.1233

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
28
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for fats-fme/b0ffab7b-58fa-475f-950e-ba65c623bb7f

Adapter
(125)
this model