test_NER / README.md
farrukhrasool112's picture
Training complete
e72e2b7 verified
metadata
license: apache-2.0
base_model: distilbert/distilbert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: test_NER
    results: []

test_NER

This model is a fine-tuned version of distilbert/distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2793
  • Precision: 0.4818
  • Recall: 0.4545
  • F1: 0.4678
  • Accuracy: 0.9147

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 56 0.3638 0.1818 0.0034 0.0067 0.8765
No log 2.0 112 0.2939 0.4912 0.4322 0.4599 0.9120
No log 3.0 168 0.2793 0.4818 0.4545 0.4678 0.9147

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.0.0+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.2