fanxiao's picture
Update README.md
720b49d
|
raw
history blame
956 Bytes

CGRE is a generation-based relation extraction model

·a SOTA chinese end-to-end relation extraction model,using bart as backbone.

·using the Distant-supervised data from cndbpedia,pretrained from the checkpoint of fnlp/bart-base-chinese.

·can perform SOTA in many chinese relation extraction dataset,such as DuIE1.0,DuIE2.0,HacRED,etc.

·easy to use,just like normal generation task.

·input is sentence,and output is linearlize triples,such as input:姚明是一名NBA篮球运动员 output:[subj]姚明[obj]NBA[rel]公司[obj]篮球运动员[rel]职业

using model:

from transformers import BertTokenizer, BartForConditionalGeneration

model_name = 'fnlp/bart-base-chinese'

tokenizer_kwargs = { "use_fast": True, "additional_special_tokens": ['', '', ''], } # if cannot see tokens in model card please open readme file

tokenizer = BertTokenizer.from_pretrained(model_name, **tokenizer_kwargs)