Labour-Law-SA-QA / README.md
faisalaljahlan's picture
Update README.md
2af8e27
|
raw
history blame
1.58 kB
---
base_model: aubmindlab/bert-base-arabert
tags:
- generated_from_trainer
model-index:
- name: Labour-Law-SA-QA
results: []
language:
- ar
library_name: transformers
pipeline_tag: question-answering
---
# Labour-Law-SA-QA
This model is a fine-tuned version of [aubmindlab/bert-base-arabert](https://huggingface.co/aubmindlab/bert-base-arabert) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1740
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 9
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 34 | 1.6275 |
| No log | 2.0 | 68 | 1.4822 |
| No log | 3.0 | 102 | 1.4659 |
| No log | 4.0 | 136 | 1.3038 |
| No log | 5.0 | 170 | 1.3173 |
| No log | 6.0 | 204 | 1.1665 |
| No log | 7.0 | 238 | 1.1344 |
| No log | 8.0 | 272 | 1.1346 |
| No log | 9.0 | 306 | 1.1740 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.3