|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: fahadqazi/Sindhi-TTS |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: Sindhi-TTS |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Sindhi-TTS |
|
|
|
This model is a fine-tuned version of [fahadqazi/Sindhi-TTS](https://huggingface.co/fahadqazi/Sindhi-TTS) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- eval_loss: 0.4602 |
|
- eval_runtime: 47.8291 |
|
- eval_samples_per_second: 36.421 |
|
- eval_steps_per_second: 18.211 |
|
- epoch: 13.2653 |
|
- step: 6500 |
|
|
|
## How to use |
|
|
|
``` |
|
|
|
from transformers import SpeechT5ForTextToSpeech, SpeechT5ForSpeechToText |
|
from transformers import SpeechT5Processor |
|
from transformers import AutoTokenizer |
|
from transformers import SpeechT5HifiGan |
|
import torch |
|
from IPython.display import Audio as IPythonAudio |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
# imporing speech processor from another repo |
|
processor = SpeechT5Processor.from_pretrained("Sana1207/Hindi_SpeechT5_finetuned") |
|
|
|
# importing tokenizer and assigning it to the speech processor |
|
tokenizer = AutoTokenizer.from_pretrained("fahadqazi/Sindhi-TTS") |
|
processor.tokenizer = tokenizer |
|
|
|
# importing the model |
|
model = SpeechT5ForTextToSpeech.from_pretrained("fahadqazi/Sindhi-TTS") |
|
|
|
# importing the vocoder from microsoft's repository |
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) |
|
|
|
# loading random vocodings (the voice) |
|
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") |
|
speaker_embeddings = embeddings_dataset[7306]["xvector"] |
|
speaker_embeddings = torch.tensor(speaker_embeddings).to(device).unsqueeze(0) |
|
|
|
|
|
# Generating Speech |
|
text = "ڪهڙا حال آهن" |
|
inputs = processor(text=text, return_tensors="pt").to(device) |
|
|
|
|
|
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) |
|
|
|
IPythonAudio(speech.cpu().numpy(), rate=16000, autoplay=True) |
|
|
|
``` |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 200 |
|
- training_steps: 10000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|