Update Example Code Snippets
#6
by
sanchit-gandhi
- opened
README.md
CHANGED
@@ -106,7 +106,7 @@ from transformers import pipeline
|
|
106 |
librispeech_en = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
107 |
audio_file = librispeech_en[0]["file"]
|
108 |
|
109 |
-
asr = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-xls-r-1b-21-to-en"
|
110 |
|
111 |
translation = asr(audio_file)
|
112 |
```
|
@@ -115,17 +115,19 @@ or step-by-step as follows:
|
|
115 |
|
116 |
```python
|
117 |
import torch
|
118 |
-
from transformers import
|
119 |
from datasets import load_dataset
|
120 |
|
121 |
model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-1b-21-to-en")
|
122 |
-
|
|
|
123 |
|
124 |
-
|
|
|
125 |
|
126 |
-
inputs =
|
127 |
-
generated_ids = model.generate(
|
128 |
-
transcription =
|
129 |
```
|
130 |
|
131 |
## Results `{lang}` -> `en`
|
|
|
106 |
librispeech_en = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
107 |
audio_file = librispeech_en[0]["file"]
|
108 |
|
109 |
+
asr = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-xls-r-1b-21-to-en")
|
110 |
|
111 |
translation = asr(audio_file)
|
112 |
```
|
|
|
115 |
|
116 |
```python
|
117 |
import torch
|
118 |
+
from transformers import AutoFeatureExtractor, AutoTokenizer, SpeechEncoderDecoderModel
|
119 |
from datasets import load_dataset
|
120 |
|
121 |
model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-1b-21-to-en")
|
122 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-xls-r-1b-21-to-en")
|
123 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-xls-r-1b-21-to-en")
|
124 |
|
125 |
+
librispeech_en = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
126 |
+
sample = librispeech_en[0]["audio"]
|
127 |
|
128 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt")
|
129 |
+
generated_ids = model.generate(**inputs)
|
130 |
+
transcription = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
131 |
```
|
132 |
|
133 |
## Results `{lang}` -> `en`
|