patrickvonplaten's picture
Update README.md
6750d7e
---
language: en
datasets:
- librispeech_asr
tags:
- speech
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
license: apache-2.0
---
# Wav2Vec2-Conformer-Large-100h with Rotary Position Embeddings
Wav2Vec2 Conformer with rotary position embeddings, pretrained on 960h hours of Librispeech and fine-tuned on **100 hours of Librispeech** on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
**Paper**: [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171)
**Authors**: Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino
The results of Wav2Vec2-Conformer can be found in Table 3 and Table 4 of the [official paper](https://arxiv.org/abs/2010.05171).
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.
# Usage
To transcribe audio files the model can be used as a standalone acoustic model as follows:
```python
from transformers import Wav2Vec2Processor, Wav2Vec2ConformerForCTC
from datasets import load_dataset
import torch
# load model and processor
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-conformer-rope-large-100h-ft")
model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rope-large-100h-ft")
# load dummy dataset and read soundfiles
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
# tokenize
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
```