bert-base-uncased-ag_news
This model is a fine-tuned version of bert-base-uncased on the ag_news dataset. It achieves the following results on the evaluation set:
- Loss: 0.3284
- Accuracy: 0.9375
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 7425
- training_steps: 74250
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5773 | 0.13 | 2000 | 0.3627 | 0.8875 |
0.3101 | 0.27 | 4000 | 0.2938 | 0.9208 |
0.3076 | 0.4 | 6000 | 0.3114 | 0.9092 |
0.3114 | 0.54 | 8000 | 0.4545 | 0.9008 |
0.3154 | 0.67 | 10000 | 0.3875 | 0.9083 |
0.3095 | 0.81 | 12000 | 0.3390 | 0.9142 |
0.2948 | 0.94 | 14000 | 0.3341 | 0.9133 |
0.2557 | 1.08 | 16000 | 0.4573 | 0.9092 |
0.258 | 1.21 | 18000 | 0.3356 | 0.9217 |
0.2455 | 1.35 | 20000 | 0.3348 | 0.9283 |
0.2361 | 1.48 | 22000 | 0.3218 | 0.93 |
0.254 | 1.62 | 24000 | 0.3814 | 0.9033 |
0.2528 | 1.75 | 26000 | 0.3628 | 0.9158 |
0.2282 | 1.89 | 28000 | 0.3302 | 0.9308 |
0.224 | 2.02 | 30000 | 0.3967 | 0.9225 |
0.174 | 2.15 | 32000 | 0.3669 | 0.9333 |
0.1848 | 2.29 | 34000 | 0.3435 | 0.9283 |
0.19 | 2.42 | 36000 | 0.3552 | 0.93 |
0.1865 | 2.56 | 38000 | 0.3996 | 0.9258 |
0.1877 | 2.69 | 40000 | 0.3749 | 0.9258 |
0.1951 | 2.83 | 42000 | 0.3963 | 0.9258 |
0.1702 | 2.96 | 44000 | 0.3655 | 0.9317 |
0.1488 | 3.1 | 46000 | 0.3942 | 0.9292 |
0.1231 | 3.23 | 48000 | 0.3998 | 0.9267 |
0.1319 | 3.37 | 50000 | 0.4292 | 0.9242 |
0.1334 | 3.5 | 52000 | 0.4904 | 0.9192 |
Framework versions
- Transformers 4.10.2
- Pytorch 1.7.1
- Datasets 1.6.1
- Tokenizers 0.10.3
- Downloads last month
- 134
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.