sentiment_deberta / README.md
eysharaazia's picture
sentiment_deberta
5be9573 verified
metadata
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: sentiment_deberta
    results: []

sentiment_deberta

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7123
  • Accuracy: 0.6938
  • F1: 0.6401
  • Precision: 0.6262
  • Recall: 0.6854

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.087 1.0 47 1.1008 0.2551 0.3042 0.4734 0.4956
0.9933 2.0 94 0.9692 0.5545 0.5098 0.5126 0.5496
0.8709 3.0 141 0.9352 0.5003 0.5003 0.5301 0.5804
0.8444 4.0 188 0.8729 0.5874 0.5602 0.5671 0.6204
0.7833 5.0 235 0.9394 0.4778 0.4980 0.5643 0.6353
0.7003 6.0 282 0.7279 0.6834 0.6306 0.6150 0.6828
0.6383 7.0 329 0.7808 0.6390 0.6123 0.6073 0.7007
0.5996 8.0 376 0.7379 0.6802 0.6367 0.6231 0.6993
0.5514 9.0 423 0.7846 0.6745 0.6204 0.6015 0.6901
0.4837 10.0 470 0.7123 0.6938 0.6401 0.6262 0.6854

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1