license: cc0-1.0 | |
datasets: | |
- JeanKaddour/minipile | |
language: | |
- en | |
library_name: transformers | |
GPT-NeoX trained on MiniPile, for a baseline to compare my MANN models against. Uses [NeelNanda/gpt-neox-tokenizer-digits](https://huggingface.co/NeelNanda/gpt-neox-tokenizer-digits) for tokenization. | |
The exact model configuration is as follows: | |
``` | |
cfg = GPTNeoXConfig( | |
vocab_size = len(tokenizer), | |
hidden_size = 768, | |
intermediate_size = 768*4, | |
num_hidden_layers = 12, | |
num_attention_heads = 12, | |
tie_word_embeddings = True, | |
hidden_act = "gelu_new", | |
tokenizer = "NeelNanda/gpt-neox-tokenizer-digits" | |
) | |
``` | |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) | |
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_euclaise__gpt-neox-122m-minipile-digits) | |
| Metric | Value | | |
|-----------------------|---------------------------| | |
| Avg. | 25.1 | | |
| ARC (25-shot) | 20.73 | | |
| HellaSwag (10-shot) | 27.03 | | |
| MMLU (5-shot) | 25.31 | | |
| TruthfulQA (0-shot) | 49.19 | | |
| Winogrande (5-shot) | 52.33 | | |
| GSM8K (5-shot) | 0.0 | | |
| DROP (3-shot) | 1.09 | | |