GUS-Net: Social Bias NER
Collection
A collection of our bias detection resources used to create a multi-label token classification model for: Generalizations, Unfairness, and Stereotypes
โข
11 items
โข
Updated
This NER model is fine-tuned from BERT, for multi-label token classification of:
You can try it out in spaces :).
Transformers pipeline doesn't have a class for multi-label token classification, but you can use this code to load the model, and run it, and format the output.
import json
import torch
from transformers import BertTokenizerFast, BertForTokenClassification
import gradio as gr
# init important things
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = BertForTokenClassification.from_pretrained('ethical-spectacle/social-bias-ner')
model.eval()
model.to('cuda' if torch.cuda.is_available() else 'cpu')
# ids to labels we want to display
id2label = {
0: 'O',
1: 'B-STEREO',
2: 'I-STEREO',
3: 'B-GEN',
4: 'I-GEN',
5: 'B-UNFAIR',
6: 'I-UNFAIR'
}
# predict function you'll want to use if using in your own code
def predict_ner_tags(sentence):
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=128)
input_ids = inputs['input_ids'].to(model.device)
attention_mask = inputs['attention_mask'].to(model.device)
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
logits = outputs.logits
probabilities = torch.sigmoid(logits)
predicted_labels = (probabilities > 0.5).int() # remember to try your own threshold
result = []
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
for i, token in enumerate(tokens):
if token not in tokenizer.all_special_tokens:
label_indices = (predicted_labels[0][i] == 1).nonzero(as_tuple=False).squeeze(-1)
labels = [id2label[idx.item()] for idx in label_indices] if label_indices.numel() > 0 else ['O']
result.append({"token": token, "labels": labels})
return json.dumps(result, indent=4)
@article{powers2024gusnet,
title={{GUS-Net: Social Bias Classification in Text with Generalizations, Unfairness, and Stereotypes}},
author={Maximus Powers and Umang Mavani and Harshitha Reddy Jonala and Ansh Tiwari and Hua Wei},
journal={arXiv preprint arXiv:2410.08388},
year={2024},
url={https://arxiv.org/abs/2410.08388}
}
Give our research group, Ethical Spectacle, a follow ;).
Base model
google-bert/bert-base-uncased