See axolotl config
axolotl version: 0.4.0
base_model: meta-llama/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: utrgvseniorproject/medtext-txt
type: completion
dataset_prepared_path: /home/ethensanchez01/med-llm/last_run_prepared
val_set_size: 0.05
output_dir: ./med-lora/Llama2-Medtext-txt-lora-epochs-2-lr-0001
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
wandb_project: Llama2-Medtext-Lora
wandb_entity: utrgvmedai
wandb_watch:
wandb_name: Llama2-Medtext-txt-lora-epochs-2-lr-0001
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0001
train_on_inputs: True # make sure you have this on True
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true
warmup_steps: 100
evals_per_epoch: 4
eval_table_size:
eval_sample_packing:
save_steps: 800
debug:
deepspeed: /home/ethensanchez01/src/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.001
fsdp:
fsdp_config:
special_tokens:
med-lora/Llama2-Medtext-txt-lora-epochs-2-lr-0001
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4128
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.532 | 0.19 | 1 | 1.4208 |
1.5994 | 0.38 | 2 | 1.4210 |
1.6281 | 0.76 | 4 | 1.4198 |
1.6221 | 1.05 | 6 | 1.4168 |
1.5891 | 1.43 | 8 | 1.4136 |
1.582 | 1.81 | 10 | 1.4128 |
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.17.0
- Tokenizers 0.15.0
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ethensanchez/Llama2-Medtext-txt-lora-epochs-2-lr-0001
Base model
meta-llama/Llama-2-7b-hf