File size: 3,951 Bytes
18c8be0
b883354
18c8be0
 
 
 
 
 
 
 
 
 
 
ccb1271
18c8be0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from typing import Dict, List, Any
from fastai.learner import load_learner
from PIL import Image
import os
import json
import numpy as np

class PreTrainedPipeline:
    def __init__(self, path=""):
        # IMPLEMENT_THIS
        # Preload all the elements you are going to need at inference.
        # For instance your model, processors, tokenizer that might be needed.
        # This function is only called once, so do all the heavy processing I/O here"""
        self.model = load_learner(os.path.join(path, "model.pkl"))
        with open(os.path.join(path, "config.json")) as config:
            config = json.load(config)
        self.id2label = config["id2label"]

    def __call__(self, inputs: "Image.Image") -> List[Dict[str, Any]]:
        """
        Args:
            inputs (:obj:`PIL.Image`):
                The raw image representation as PIL.
                No transformation made whatsoever from the input. Make all necessary transformations here.
        Return:
            A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
                It is preferred if the returned list is in decreasing `score` order
        """
        # IMPLEMENT_THIS
        # FastAI expects a np array, not a PIL Image.
        _, _, preds = self.model.predict(np.array(inputs))
        preds = preds.tolist()
        labels = [
            {"label": str(self.id2label["0"]), "score": preds[0]},
            {"label": str(self.id2label["1"]), "score": preds[1]},
            {"label": str(self.id2label["2"]), "score": preds[2]},
            {"label": str(self.id2label["3"]), "score": preds[3]},
            {"label": str(self.id2label["4"]), "score": preds[4]},
            {"label": str(self.id2label["5"]), "score": preds[5]},
            {"label": str(self.id2label["6"]), "score": preds[6]},
            {"label": str(self.id2label["7"]), "score": preds[7]},
            {"label": str(self.id2label["8"]), "score": preds[8]},
            {"label": str(self.id2label["9"]), "score": preds[9]},
            {"label": str(self.id2label["10"]), "score": preds[10]},
            {"label": str(self.id2label["11"]), "score": preds[11]},
            {"label": str(self.id2label["12"]), "score": preds[12]},
            {"label": str(self.id2label["13"]), "score": preds[13]},
            {"label": str(self.id2label["14"]), "score": preds[14]},
            {"label": str(self.id2label["15"]), "score": preds[15]},
            {"label": str(self.id2label["16"]), "score": preds[16]},
            {"label": str(self.id2label["17"]), "score": preds[17]},
            {"label": str(self.id2label["18"]), "score": preds[18]},
            {"label": str(self.id2label["19"]), "score": preds[19]},
            {"label": str(self.id2label["20"]), "score": preds[20]},
            {"label": str(self.id2label["21"]), "score": preds[21]},
            {"label": str(self.id2label["22"]), "score": preds[22]},
            {"label": str(self.id2label["23"]), "score": preds[23]},
            {"label": str(self.id2label["24"]), "score": preds[24]},
            {"label": str(self.id2label["25"]), "score": preds[25]},
            {"label": str(self.id2label["26"]), "score": preds[26]},
            {"label": str(self.id2label["27"]), "score": preds[27]},
            {"label": str(self.id2label["28"]), "score": preds[28]},
            {"label": str(self.id2label["29"]), "score": preds[29]},
            {"label": str(self.id2label["30"]), "score": preds[30]},
            {"label": str(self.id2label["31"]), "score": preds[31]},
            {"label": str(self.id2label["32"]), "score": preds[32]},
            {"label": str(self.id2label["33"]), "score": preds[33]},
            {"label": str(self.id2label["34"]), "score": preds[34]},
            {"label": str(self.id2label["35"]), "score": preds[35]},
            {"label": str(self.id2label["36"]), "score": preds[36]},
        ]
        return labels