To reproduce this run, first call get_ctc_tokenizer.py to train the CTC tokenizer and then execute the following command to train the CTC system:

#!/usr/bin/env bash
python run_flax_speech_recognition_ctc.py \
        --model_name_or_path="esb/wav2vec2-ctc-pretrained" \
        --tokenizer_name="wav2vec2-ctc-ami-tokenizer" \
        --dataset_name="esb/datasets" \
        --dataset_config_name="ami" \
        --output_dir="./" \
        --wandb_project="wav2vec2-ctc" \
        --wandb_name="wav2vec2-ctc-ami" \
        --max_steps="50000" \
        --save_steps="10000" \
        --eval_steps="10000" \
        --learning_rate="3e-4" \
        --logging_steps="25" \
        --warmup_steps="5000" \
        --preprocessing_num_workers="1" \
        --hidden_dropout="0.2" \
        --activation_dropout="0.2" \
        --feat_proj_dropout="0.2" \
        --do_train \
        --do_eval \
        --do_predict \
        --overwrite_output_dir \
        --gradient_checkpointing \
        --freeze_feature_encoder \
        --push_to_hub \
        --use_auth_token
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train esc-bench/wav2vec2-ctc-ami