Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_resume_from_checkpoints: false
base_model: unsloth/Phi-3.5-mini-instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - b4ae15917673f3a5_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/b4ae15917673f3a5_train_data.json
  type:
    field_instruction: instruction
    field_output: output
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/cf1ebf8e-867f-4a25-9a84-696a66d4629e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 5.0
max_steps: null
micro_batch_size: 4
mlflow_experiment_name: /tmp/b4ae15917673f3a5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: false
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 8
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: 61595bbc-d641-4708-aec4-c2ea3a8d9a85
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 61595bbc-d641-4708-aec4-c2ea3a8d9a85
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null

cf1ebf8e-867f-4a25-9a84-696a66d4629e

This model is a fine-tuned version of unsloth/Phi-3.5-mini-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 7.0293

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 30
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
5.9611 0.0002 1 6.0076
4.8196 0.0157 100 5.4899
6.2363 0.0314 200 5.3367
5.096 0.0471 300 5.1652
6.5592 0.0627 400 6.2290
7.2188 0.0784 500 7.9515
7.0274 0.0941 600 7.0293

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for error577/cf1ebf8e-867f-4a25-9a84-696a66d4629e

Adapter
(254)
this model