See axolotl config
axolotl version: 0.4.1
adapter: qlora
auto_resume_from_checkpoints: true
base_model: bigscience/bloom-560m
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 084d4537100cb186_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/084d4537100cb186_train_data.json
type:
field_input: langpair
field_instruction: source
field_output: good-translation
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: error577/c9014b2e-4cf8-4380-a7b9-319dcd8bb12a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 2
mlflow_experiment_name: /tmp/084d4537100cb186_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_4bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: 15f4c23f-d52e-4354-806b-0c5da0374350
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 15f4c23f-d52e-4354-806b-0c5da0374350
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null
c9014b2e-4cf8-4380-a7b9-319dcd8bb12a
This model is a fine-tuned version of bigscience/bloom-560m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5994
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_4BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 4.4030 |
6.5189 | 0.0222 | 100 | 2.6937 |
7.8292 | 0.0444 | 200 | 2.4313 |
5.3937 | 0.0666 | 300 | 2.3118 |
7.8199 | 0.0888 | 400 | 2.2125 |
5.4877 | 0.1110 | 500 | 2.1706 |
4.9892 | 0.1332 | 600 | 2.0680 |
5.6608 | 0.1554 | 700 | 2.0517 |
4.671 | 0.1776 | 800 | 2.0242 |
6.3505 | 0.1998 | 900 | 1.8601 |
4.1893 | 0.2220 | 1000 | 1.8662 |
4.8748 | 0.2441 | 1100 | 1.8771 |
5.0172 | 0.2663 | 1200 | 1.8052 |
5.2344 | 0.2885 | 1300 | 1.8127 |
4.4286 | 0.3107 | 1400 | 1.7529 |
4.4394 | 0.3329 | 1500 | 1.7735 |
4.4868 | 0.3551 | 1600 | 1.6954 |
4.6618 | 0.3773 | 1700 | 1.7275 |
4.6153 | 0.3995 | 1800 | 1.6793 |
5.0591 | 0.4217 | 1900 | 1.7122 |
3.6119 | 0.4439 | 2000 | 1.6413 |
3.9039 | 0.4661 | 2100 | 1.6450 |
4.1736 | 0.4883 | 2200 | 1.6268 |
4.7935 | 0.5105 | 2300 | 1.6143 |
4.0114 | 0.5327 | 2400 | 1.5969 |
3.9156 | 0.5549 | 2500 | 1.5649 |
4.5978 | 0.5771 | 2600 | 1.5713 |
3.7863 | 0.5993 | 2700 | 1.5953 |
3.469 | 0.6215 | 2800 | 1.5994 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 41
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for error577/c9014b2e-4cf8-4380-a7b9-319dcd8bb12a
Base model
bigscience/bloom-560m