|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" ViT GMML model configuration""" |
|
|
|
from transformers import PretrainedConfig |
|
from transformers import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VIT_GMML_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"erow/vit-GMML-base": "https://huggingface.co/erow/GMML/resolve/main/config.json", |
|
} |
|
|
|
|
|
class ViTGMMLConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`ViTGMMLModel`]. It is used to instantiate an ViT |
|
GMML model according to the specified arguments, defining the model architecture. Instantiating a configuration with |
|
the defaults will yield a similar configuration to that of the ViT |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.0): |
|
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
image_size (`int`, *optional*, defaults to 224): |
|
The size (resolution) of each image. |
|
patch_size (`int`, *optional*, defaults to 16): |
|
The size (resolution) of each patch. |
|
num_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
qkv_bias (`bool`, *optional*, defaults to `True`): |
|
Whether to add a bias to the queries, keys and values. |
|
decoder_num_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the decoder. |
|
decoder_hidden_size (`int`, *optional*, defaults to 512): |
|
Dimensionality of the decoder. |
|
decoder_num_hidden_layers (`int`, *optional*, defaults to 8): |
|
Number of hidden layers in the decoder. |
|
decoder_intermediate_size (`int`, *optional*, defaults to 2048): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the decoder. |
|
mask_ratio (`float`, *optional*, defaults to 0.75): |
|
The ratio of the number of masked tokens in the input sequence. |
|
norm_pix_loss (`bool`, *optional*, defaults to `False`): |
|
Whether or not to train with normalized pixels (see Table 3 in the paper). Using normalized pixels improved |
|
representation quality in the experiments of the authors. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import ViTGMMLConfig, ViTGMMLModel |
|
|
|
>>> # Initializing a ViT GMML vit-GMML-base style configuration |
|
>>> configuration = ViTGMMLConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the vit-GMML-base style configuration |
|
>>> model = ViTGMMLModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "vit_gmml" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.0, |
|
attention_probs_dropout_prob=0.0, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
image_size=224, |
|
patch_size=16, |
|
num_channels=3, |
|
qkv_bias=True, |
|
mask_ratio=0.75, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.num_channels = num_channels |
|
self.qkv_bias = qkv_bias |
|
self.mask_ratio = mask_ratio |
|
|