gent
commited on
Commit
•
5b5b080
1
Parent(s):
79ea85b
Add model files
Browse files- README.md +46 -0
- configuration_gmml.py +130 -0
- modeling_gmml.py +890 -0
README.md
CHANGED
@@ -1,3 +1,49 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- self-supervised learning
|
5 |
+
- vision
|
6 |
+
- GMML
|
7 |
+
inference: false
|
8 |
+
|
9 |
---
|
10 |
+
|
11 |
+
# Model description
|
12 |
+
|
13 |
+
GMML is a self-supervised learning model that learns to group masked pixels in an image. The model is trained on ImageNet-1K.
|
14 |
+
|
15 |
+
|
16 |
+
# Model Sources
|
17 |
+
|
18 |
+
- https://github.com/Sara-Ahmed/GMML
|
19 |
+
- https://arxiv.org/abs/2205.14986
|
20 |
+
|
21 |
+
|
22 |
+
# Model Card Authors
|
23 |
+
Sara Atito, Muhammad Awais, Josef Kittler
|
24 |
+
|
25 |
+
# How to use
|
26 |
+
|
27 |
+
```python
|
28 |
+
from transformers import BertConfig, BertModel
|
29 |
+
|
30 |
+
config = BertConfig()
|
31 |
+
model = BertModel(config)
|
32 |
+
|
33 |
+
model.push_to_hub("nielsr/my-awesome-bert-model")
|
34 |
+
|
35 |
+
# reload
|
36 |
+
model = BertModel.from_pretrained("nielsr/my-awesome-bert-model")
|
37 |
+
```
|
38 |
+
|
39 |
+
# BibTeX entry and citation info
|
40 |
+
```
|
41 |
+
@inproceedings{atito2023gmml,
|
42 |
+
title={GMML is all you need},
|
43 |
+
author={Atito, Sara and Awais, Muhammed and Nandam, Srinivasa and Kittler, Josef},
|
44 |
+
booktitle={2023 IEEE International Conference on Image Processing (ICIP)},
|
45 |
+
pages={2125--2129},
|
46 |
+
year={2023},
|
47 |
+
organization={IEEE}
|
48 |
+
}
|
49 |
+
```
|
configuration_gmml.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Facebook AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" ViT GMML model configuration"""
|
16 |
+
|
17 |
+
from transformers import PretrainedConfig
|
18 |
+
from transformers import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
VIT_GMML_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"erow/vit-GMML-base": "https://huggingface.co/erow/GMML/resolve/main/config.json",
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class ViTGMMLConfig(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`ViTGMMLModel`]. It is used to instantiate an ViT
|
31 |
+
GMML model according to the specified arguments, defining the model architecture. Instantiating a configuration with
|
32 |
+
the defaults will yield a similar configuration to that of the ViT
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
40 |
+
Dimensionality of the encoder layers and the pooler layer.
|
41 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
42 |
+
Number of hidden layers in the Transformer encoder.
|
43 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
44 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
45 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
46 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
47 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
48 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
49 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
50 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
51 |
+
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
|
52 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
53 |
+
The dropout ratio for the attention probabilities.
|
54 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
55 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
56 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
57 |
+
The epsilon used by the layer normalization layers.
|
58 |
+
image_size (`int`, *optional*, defaults to 224):
|
59 |
+
The size (resolution) of each image.
|
60 |
+
patch_size (`int`, *optional*, defaults to 16):
|
61 |
+
The size (resolution) of each patch.
|
62 |
+
num_channels (`int`, *optional*, defaults to 3):
|
63 |
+
The number of input channels.
|
64 |
+
qkv_bias (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether to add a bias to the queries, keys and values.
|
66 |
+
decoder_num_attention_heads (`int`, *optional*, defaults to 16):
|
67 |
+
Number of attention heads for each attention layer in the decoder.
|
68 |
+
decoder_hidden_size (`int`, *optional*, defaults to 512):
|
69 |
+
Dimensionality of the decoder.
|
70 |
+
decoder_num_hidden_layers (`int`, *optional*, defaults to 8):
|
71 |
+
Number of hidden layers in the decoder.
|
72 |
+
decoder_intermediate_size (`int`, *optional*, defaults to 2048):
|
73 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the decoder.
|
74 |
+
mask_ratio (`float`, *optional*, defaults to 0.75):
|
75 |
+
The ratio of the number of masked tokens in the input sequence.
|
76 |
+
norm_pix_loss (`bool`, *optional*, defaults to `False`):
|
77 |
+
Whether or not to train with normalized pixels (see Table 3 in the paper). Using normalized pixels improved
|
78 |
+
representation quality in the experiments of the authors.
|
79 |
+
|
80 |
+
Example:
|
81 |
+
|
82 |
+
```python
|
83 |
+
>>> from transformers import ViTGMMLConfig, ViTGMMLModel
|
84 |
+
|
85 |
+
>>> # Initializing a ViT GMML vit-GMML-base style configuration
|
86 |
+
>>> configuration = ViTGMMLConfig()
|
87 |
+
|
88 |
+
>>> # Initializing a model (with random weights) from the vit-GMML-base style configuration
|
89 |
+
>>> model = ViTGMMLModel(configuration)
|
90 |
+
|
91 |
+
>>> # Accessing the model configuration
|
92 |
+
>>> configuration = model.config
|
93 |
+
```"""
|
94 |
+
|
95 |
+
model_type = "vit_gmml"
|
96 |
+
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
hidden_size=768,
|
100 |
+
num_hidden_layers=12,
|
101 |
+
num_attention_heads=12,
|
102 |
+
intermediate_size=3072,
|
103 |
+
hidden_act="gelu",
|
104 |
+
hidden_dropout_prob=0.0,
|
105 |
+
attention_probs_dropout_prob=0.0,
|
106 |
+
initializer_range=0.02,
|
107 |
+
layer_norm_eps=1e-12,
|
108 |
+
image_size=224,
|
109 |
+
patch_size=16,
|
110 |
+
num_channels=3,
|
111 |
+
qkv_bias=True,
|
112 |
+
mask_ratio=0.75,
|
113 |
+
**kwargs,
|
114 |
+
):
|
115 |
+
super().__init__(**kwargs)
|
116 |
+
|
117 |
+
self.hidden_size = hidden_size
|
118 |
+
self.num_hidden_layers = num_hidden_layers
|
119 |
+
self.num_attention_heads = num_attention_heads
|
120 |
+
self.intermediate_size = intermediate_size
|
121 |
+
self.hidden_act = hidden_act
|
122 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
123 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
124 |
+
self.initializer_range = initializer_range
|
125 |
+
self.layer_norm_eps = layer_norm_eps
|
126 |
+
self.image_size = image_size
|
127 |
+
self.patch_size = patch_size
|
128 |
+
self.num_channels = num_channels
|
129 |
+
self.qkv_bias = qkv_bias
|
130 |
+
self.mask_ratio = mask_ratio
|
modeling_gmml.py
ADDED
@@ -0,0 +1,890 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Facebook AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch ViT GMML (masked autoencoder) model."""
|
16 |
+
|
17 |
+
|
18 |
+
import collections.abc
|
19 |
+
import math
|
20 |
+
from copy import deepcopy
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import Optional, Set, Tuple, Union
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
import torch
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
|
29 |
+
from transformers.activations import ACT2FN
|
30 |
+
from transformers.modeling_outputs import BaseModelOutput
|
31 |
+
from transformers.modeling_utils import PreTrainedModel
|
32 |
+
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
33 |
+
from transformers.utils import (
|
34 |
+
ModelOutput,
|
35 |
+
add_start_docstrings,
|
36 |
+
add_start_docstrings_to_model_forward,
|
37 |
+
logging,
|
38 |
+
replace_return_docstrings,
|
39 |
+
)
|
40 |
+
from configuration_gmml import ViTGMMLConfig
|
41 |
+
|
42 |
+
|
43 |
+
logger = logging.get_logger(__name__)
|
44 |
+
|
45 |
+
_CONFIG_FOR_DOC = "ViTGMMLConfig"
|
46 |
+
_CHECKPOINT_FOR_DOC = "erow/vit-gmml-base"
|
47 |
+
|
48 |
+
VIT_GMML_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
49 |
+
"erow/vit-gmml-base",
|
50 |
+
# See all ViTGMML models at https://huggingface.co/models?filter=vit_gmml
|
51 |
+
]
|
52 |
+
|
53 |
+
|
54 |
+
@dataclass
|
55 |
+
class ViTGMMLModelOutput(ModelOutput):
|
56 |
+
"""
|
57 |
+
Class for ViTGMMLModel's outputs, with potential hidden states and attentions.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
61 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
62 |
+
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
63 |
+
Tensor indicating which patches are masked (1) and which are not (0).
|
64 |
+
ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
65 |
+
Tensor containing the original index of the (shuffled) masked patches.
|
66 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
67 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
68 |
+
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
|
69 |
+
plus the initial embedding outputs.
|
70 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
71 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
72 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
73 |
+
the self-attention heads.
|
74 |
+
"""
|
75 |
+
|
76 |
+
last_hidden_state: torch.FloatTensor = None
|
77 |
+
noise: torch.LongTensor = None
|
78 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
79 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
@dataclass
|
84 |
+
class ViTGMMLForPreTrainingOutput(ModelOutput):
|
85 |
+
"""
|
86 |
+
Class for ViTGMMLForPreTraining's outputs, with potential hidden states and attentions.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
loss (`torch.FloatTensor` of shape `(1,)`):
|
90 |
+
Pixel reconstruction loss.
|
91 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`):
|
92 |
+
Pixel reconstruction logits.
|
93 |
+
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
94 |
+
Tensor indicating which patches are masked (1) and which are not (0).
|
95 |
+
ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
96 |
+
Tensor containing the original index of the (shuffled) masked patches.
|
97 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
98 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
99 |
+
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
|
100 |
+
plus the initial embedding outputs.
|
101 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
102 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
103 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
104 |
+
the self-attention heads.
|
105 |
+
"""
|
106 |
+
|
107 |
+
loss: Optional[torch.FloatTensor] = None
|
108 |
+
logits: torch.FloatTensor = None
|
109 |
+
noise: torch.LongTensor = None
|
110 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
111 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
112 |
+
|
113 |
+
|
114 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False):
|
115 |
+
"""
|
116 |
+
Create 2D sin/cos positional embeddings.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
embed_dim (`int`):
|
120 |
+
Embedding dimension.
|
121 |
+
grid_size (`int`):
|
122 |
+
The grid height and width.
|
123 |
+
add_cls_token (`bool`, *optional*, defaults to `False`):
|
124 |
+
Whether or not to add a classification (CLS) token.
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
(`torch.FloatTensor` of shape (grid_size*grid_size, embed_dim) or (1+grid_size*grid_size, embed_dim): the
|
128 |
+
position embeddings (with or without classification token)
|
129 |
+
"""
|
130 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
131 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
132 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
133 |
+
grid = np.stack(grid, axis=0)
|
134 |
+
|
135 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
136 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
137 |
+
if add_cls_token:
|
138 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
139 |
+
return pos_embed
|
140 |
+
|
141 |
+
|
142 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
143 |
+
if embed_dim % 2 != 0:
|
144 |
+
raise ValueError("embed_dim must be even")
|
145 |
+
|
146 |
+
# use half of dimensions to encode grid_h
|
147 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
148 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
149 |
+
|
150 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
151 |
+
return emb
|
152 |
+
|
153 |
+
|
154 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
155 |
+
"""
|
156 |
+
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
|
157 |
+
"""
|
158 |
+
if embed_dim % 2 != 0:
|
159 |
+
raise ValueError("embed_dim must be even")
|
160 |
+
|
161 |
+
omega = np.arange(embed_dim // 2, dtype=float)
|
162 |
+
omega /= embed_dim / 2.0
|
163 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
164 |
+
|
165 |
+
pos = pos.reshape(-1) # (M,)
|
166 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
167 |
+
|
168 |
+
emb_sin = np.sin(out) # (M, D/2)
|
169 |
+
emb_cos = np.cos(out) # (M, D/2)
|
170 |
+
|
171 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
172 |
+
return emb
|
173 |
+
|
174 |
+
|
175 |
+
class ViTGMMLEmbeddings(nn.Module):
|
176 |
+
"""
|
177 |
+
Construct the CLS token, position and patch embeddings.
|
178 |
+
|
179 |
+
"""
|
180 |
+
|
181 |
+
def __init__(self, config):
|
182 |
+
super().__init__()
|
183 |
+
|
184 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
185 |
+
self.patch_embeddings = ViTGMMLPatchEmbeddings(config)
|
186 |
+
self.num_patches = self.patch_embeddings.num_patches
|
187 |
+
# fixed sin-cos embedding
|
188 |
+
self.position_embeddings = nn.Parameter(
|
189 |
+
torch.zeros(1, self.num_patches + 1, config.hidden_size), requires_grad=False
|
190 |
+
)
|
191 |
+
self.config = config
|
192 |
+
self.initialize_weights()
|
193 |
+
|
194 |
+
def initialize_weights(self):
|
195 |
+
# initialize (and freeze) position embeddings by sin-cos embedding
|
196 |
+
pos_embed = get_2d_sincos_pos_embed(
|
197 |
+
self.position_embeddings.shape[-1], int(self.patch_embeddings.num_patches**0.5), add_cls_token=True
|
198 |
+
)
|
199 |
+
self.position_embeddings.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
|
200 |
+
|
201 |
+
# initialize patch_embeddings like nn.Linear (instead of nn.Conv2d)
|
202 |
+
w = self.patch_embeddings.projection.weight.data
|
203 |
+
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
204 |
+
|
205 |
+
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
|
206 |
+
torch.nn.init.normal_(self.cls_token, std=self.config.initializer_range)
|
207 |
+
|
208 |
+
|
209 |
+
def forward(self, pixel_values, noise=None):
|
210 |
+
batch_size, num_channels, height, width = pixel_values.shape
|
211 |
+
embeddings = self.patch_embeddings(pixel_values)
|
212 |
+
|
213 |
+
# add position embeddings w/o cls token
|
214 |
+
embeddings = embeddings + self.position_embeddings[:, 1:, :]
|
215 |
+
|
216 |
+
# append cls token
|
217 |
+
cls_token = self.cls_token + self.position_embeddings[:, :1, :]
|
218 |
+
cls_tokens = cls_token.expand(embeddings.shape[0], -1, -1)
|
219 |
+
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
|
220 |
+
|
221 |
+
return embeddings
|
222 |
+
|
223 |
+
class ViTGMMLPatchEmbeddings(nn.Module):
|
224 |
+
"""
|
225 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
226 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
227 |
+
Transformer.
|
228 |
+
"""
|
229 |
+
|
230 |
+
def __init__(self, config):
|
231 |
+
super().__init__()
|
232 |
+
image_size, patch_size = config.image_size, config.patch_size
|
233 |
+
num_channels, hidden_size = config.num_channels, config.hidden_size
|
234 |
+
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
235 |
+
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
236 |
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
237 |
+
self.image_size = image_size
|
238 |
+
self.patch_size = patch_size
|
239 |
+
self.num_channels = num_channels
|
240 |
+
self.num_patches = num_patches
|
241 |
+
|
242 |
+
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
|
243 |
+
|
244 |
+
def forward(self, pixel_values):
|
245 |
+
batch_size, num_channels, height, width = pixel_values.shape
|
246 |
+
if num_channels != self.num_channels:
|
247 |
+
raise ValueError(
|
248 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
249 |
+
)
|
250 |
+
if height != self.image_size[0] or width != self.image_size[1]:
|
251 |
+
raise ValueError(
|
252 |
+
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
|
253 |
+
)
|
254 |
+
x = self.projection(pixel_values).flatten(2).transpose(1, 2)
|
255 |
+
return x
|
256 |
+
|
257 |
+
|
258 |
+
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention ViT->ViTGMML
|
259 |
+
class ViTGMMLSelfAttention(nn.Module):
|
260 |
+
def __init__(self, config: ViTGMMLConfig) -> None:
|
261 |
+
super().__init__()
|
262 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
263 |
+
raise ValueError(
|
264 |
+
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
|
265 |
+
f"heads {config.num_attention_heads}."
|
266 |
+
)
|
267 |
+
|
268 |
+
self.num_attention_heads = config.num_attention_heads
|
269 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
270 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
271 |
+
|
272 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
273 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
274 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
275 |
+
|
276 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
277 |
+
|
278 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
279 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
280 |
+
x = x.view(new_x_shape)
|
281 |
+
return x.permute(0, 2, 1, 3)
|
282 |
+
|
283 |
+
def forward(
|
284 |
+
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
|
285 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
286 |
+
mixed_query_layer = self.query(hidden_states)
|
287 |
+
|
288 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
289 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
290 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
291 |
+
|
292 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
293 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
294 |
+
|
295 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
296 |
+
|
297 |
+
# Normalize the attention scores to probabilities.
|
298 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
299 |
+
|
300 |
+
# This is actually dropping out entire tokens to attend to, which might
|
301 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
302 |
+
attention_probs = self.dropout(attention_probs)
|
303 |
+
|
304 |
+
# Mask heads if we want to
|
305 |
+
if head_mask is not None:
|
306 |
+
attention_probs = attention_probs * head_mask
|
307 |
+
|
308 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
309 |
+
|
310 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
311 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
312 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
313 |
+
|
314 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
315 |
+
|
316 |
+
return outputs
|
317 |
+
|
318 |
+
|
319 |
+
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->ViTGMML
|
320 |
+
class ViTGMMLSelfOutput(nn.Module):
|
321 |
+
"""
|
322 |
+
The residual connection is defined in ViTGMMLLayer instead of here (as is the case with other models), due to the
|
323 |
+
layernorm applied before each block.
|
324 |
+
"""
|
325 |
+
|
326 |
+
def __init__(self, config: ViTGMMLConfig) -> None:
|
327 |
+
super().__init__()
|
328 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
329 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
330 |
+
|
331 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
332 |
+
hidden_states = self.dense(hidden_states)
|
333 |
+
hidden_states = self.dropout(hidden_states)
|
334 |
+
|
335 |
+
return hidden_states
|
336 |
+
|
337 |
+
|
338 |
+
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->ViTGMML
|
339 |
+
class ViTGMMLAttention(nn.Module):
|
340 |
+
def __init__(self, config: ViTGMMLConfig) -> None:
|
341 |
+
super().__init__()
|
342 |
+
self.attention = ViTGMMLSelfAttention(config)
|
343 |
+
self.output = ViTGMMLSelfOutput(config)
|
344 |
+
self.pruned_heads = set()
|
345 |
+
|
346 |
+
def prune_heads(self, heads: Set[int]) -> None:
|
347 |
+
if len(heads) == 0:
|
348 |
+
return
|
349 |
+
heads, index = find_pruneable_heads_and_indices(
|
350 |
+
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
351 |
+
)
|
352 |
+
|
353 |
+
# Prune linear layers
|
354 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
355 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
356 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
357 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
358 |
+
|
359 |
+
# Update hyper params and store pruned heads
|
360 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
361 |
+
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
362 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
363 |
+
|
364 |
+
def forward(
|
365 |
+
self,
|
366 |
+
hidden_states: torch.Tensor,
|
367 |
+
head_mask: Optional[torch.Tensor] = None,
|
368 |
+
output_attentions: bool = False,
|
369 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
370 |
+
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
|
371 |
+
|
372 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
373 |
+
|
374 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
375 |
+
return outputs
|
376 |
+
|
377 |
+
|
378 |
+
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate ViT->ViTGMML
|
379 |
+
class ViTGMMLIntermediate(nn.Module):
|
380 |
+
def __init__(self, config: ViTGMMLConfig) -> None:
|
381 |
+
super().__init__()
|
382 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
383 |
+
if isinstance(config.hidden_act, str):
|
384 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
385 |
+
else:
|
386 |
+
self.intermediate_act_fn = config.hidden_act
|
387 |
+
|
388 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
389 |
+
hidden_states = self.dense(hidden_states)
|
390 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
391 |
+
|
392 |
+
return hidden_states
|
393 |
+
|
394 |
+
|
395 |
+
# Copied from transformers.models.vit.modeling_vit.ViTOutput ViT->ViTGMML
|
396 |
+
class ViTGMMLOutput(nn.Module):
|
397 |
+
def __init__(self, config: ViTGMMLConfig) -> None:
|
398 |
+
super().__init__()
|
399 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
400 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
401 |
+
|
402 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
403 |
+
hidden_states = self.dense(hidden_states)
|
404 |
+
hidden_states = self.dropout(hidden_states)
|
405 |
+
|
406 |
+
hidden_states = hidden_states + input_tensor
|
407 |
+
|
408 |
+
return hidden_states
|
409 |
+
|
410 |
+
|
411 |
+
# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->ViTGMML
|
412 |
+
class ViTGMMLLayer(nn.Module):
|
413 |
+
"""This corresponds to the Block class in the timm implementation."""
|
414 |
+
|
415 |
+
def __init__(self, config: ViTGMMLConfig) -> None:
|
416 |
+
super().__init__()
|
417 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
418 |
+
self.seq_len_dim = 1
|
419 |
+
self.attention = ViTGMMLAttention(config)
|
420 |
+
self.intermediate = ViTGMMLIntermediate(config)
|
421 |
+
self.output = ViTGMMLOutput(config)
|
422 |
+
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
423 |
+
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
424 |
+
|
425 |
+
def forward(
|
426 |
+
self,
|
427 |
+
hidden_states: torch.Tensor,
|
428 |
+
head_mask: Optional[torch.Tensor] = None,
|
429 |
+
output_attentions: bool = False,
|
430 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
431 |
+
self_attention_outputs = self.attention(
|
432 |
+
self.layernorm_before(hidden_states), # in ViTGMML, layernorm is applied before self-attention
|
433 |
+
head_mask,
|
434 |
+
output_attentions=output_attentions,
|
435 |
+
)
|
436 |
+
attention_output = self_attention_outputs[0]
|
437 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
438 |
+
|
439 |
+
# first residual connection
|
440 |
+
hidden_states = attention_output + hidden_states
|
441 |
+
|
442 |
+
# in ViTGMML, layernorm is also applied after self-attention
|
443 |
+
layer_output = self.layernorm_after(hidden_states)
|
444 |
+
layer_output = self.intermediate(layer_output)
|
445 |
+
|
446 |
+
# second residual connection is done here
|
447 |
+
layer_output = self.output(layer_output, hidden_states)
|
448 |
+
|
449 |
+
outputs = (layer_output,) + outputs
|
450 |
+
|
451 |
+
return outputs
|
452 |
+
|
453 |
+
|
454 |
+
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->ViTGMML
|
455 |
+
class ViTGMMLEncoder(nn.Module):
|
456 |
+
def __init__(self, config: ViTGMMLConfig) -> None:
|
457 |
+
super().__init__()
|
458 |
+
self.config = config
|
459 |
+
self.layer = nn.ModuleList([ViTGMMLLayer(config) for _ in range(config.num_hidden_layers)])
|
460 |
+
self.gradient_checkpointing = False
|
461 |
+
|
462 |
+
def forward(
|
463 |
+
self,
|
464 |
+
hidden_states: torch.Tensor,
|
465 |
+
head_mask: Optional[torch.Tensor] = None,
|
466 |
+
output_attentions: bool = False,
|
467 |
+
output_hidden_states: bool = False,
|
468 |
+
return_dict: bool = True,
|
469 |
+
) -> Union[tuple, BaseModelOutput]:
|
470 |
+
all_hidden_states = () if output_hidden_states else None
|
471 |
+
all_self_attentions = () if output_attentions else None
|
472 |
+
|
473 |
+
for i, layer_module in enumerate(self.layer):
|
474 |
+
if output_hidden_states:
|
475 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
476 |
+
|
477 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
478 |
+
|
479 |
+
if self.gradient_checkpointing and self.training:
|
480 |
+
layer_outputs = self._gradient_checkpointing_func(
|
481 |
+
layer_module.__call__,
|
482 |
+
hidden_states,
|
483 |
+
layer_head_mask,
|
484 |
+
output_attentions,
|
485 |
+
)
|
486 |
+
else:
|
487 |
+
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
|
488 |
+
|
489 |
+
hidden_states = layer_outputs[0]
|
490 |
+
|
491 |
+
if output_attentions:
|
492 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
493 |
+
|
494 |
+
if output_hidden_states:
|
495 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
496 |
+
|
497 |
+
if not return_dict:
|
498 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
499 |
+
return BaseModelOutput(
|
500 |
+
last_hidden_state=hidden_states,
|
501 |
+
hidden_states=all_hidden_states,
|
502 |
+
attentions=all_self_attentions,
|
503 |
+
)
|
504 |
+
|
505 |
+
|
506 |
+
class ViTGMMLPreTrainedModel(PreTrainedModel):
|
507 |
+
"""
|
508 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
509 |
+
models.
|
510 |
+
"""
|
511 |
+
|
512 |
+
config_class = ViTGMMLConfig
|
513 |
+
base_model_prefix = "vit"
|
514 |
+
main_input_name = "pixel_values"
|
515 |
+
supports_gradient_checkpointing = True
|
516 |
+
|
517 |
+
def _init_weights(self, module):
|
518 |
+
"""Initialize the weights"""
|
519 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
520 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
521 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
522 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
523 |
+
if module.bias is not None:
|
524 |
+
module.bias.data.zero_()
|
525 |
+
elif isinstance(module, nn.LayerNorm):
|
526 |
+
module.bias.data.zero_()
|
527 |
+
module.weight.data.fill_(1.0)
|
528 |
+
|
529 |
+
|
530 |
+
VIT_GMML_START_DOCSTRING = r"""
|
531 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
532 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
533 |
+
behavior.
|
534 |
+
|
535 |
+
Parameters:
|
536 |
+
config ([`ViTGMMLConfig`]): Model configuration class with all the parameters of the model.
|
537 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
538 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
539 |
+
"""
|
540 |
+
|
541 |
+
VIT_GMML_INPUTS_DOCSTRING = r"""
|
542 |
+
Args:
|
543 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
544 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
|
545 |
+
for details.
|
546 |
+
|
547 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
548 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
549 |
+
|
550 |
+
- 1 indicates the head is **not masked**,
|
551 |
+
- 0 indicates the head is **masked**.
|
552 |
+
|
553 |
+
output_attentions (`bool`, *optional*):
|
554 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
555 |
+
tensors for more detail.
|
556 |
+
output_hidden_states (`bool`, *optional*):
|
557 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
558 |
+
more detail.
|
559 |
+
return_dict (`bool`, *optional*):
|
560 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
561 |
+
"""
|
562 |
+
|
563 |
+
|
564 |
+
@add_start_docstrings(
|
565 |
+
"The bare ViTGMML Model transformer outputting raw hidden-states without any specific head on top.",
|
566 |
+
VIT_GMML_START_DOCSTRING,
|
567 |
+
)
|
568 |
+
class ViTGMMLModel(ViTGMMLPreTrainedModel):
|
569 |
+
def __init__(self, config):
|
570 |
+
super().__init__(config)
|
571 |
+
self.config = config
|
572 |
+
|
573 |
+
self.embeddings = ViTGMMLEmbeddings(config)
|
574 |
+
self.encoder = ViTGMMLEncoder(config)
|
575 |
+
|
576 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
577 |
+
|
578 |
+
# Initialize weights and apply final processing
|
579 |
+
self.post_init()
|
580 |
+
|
581 |
+
def get_input_embeddings(self):
|
582 |
+
return self.embeddings.patch_embeddings
|
583 |
+
|
584 |
+
def _prune_heads(self, heads_to_prune):
|
585 |
+
"""
|
586 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
587 |
+
class PreTrainedModel
|
588 |
+
"""
|
589 |
+
for layer, heads in heads_to_prune.items():
|
590 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
591 |
+
|
592 |
+
@add_start_docstrings_to_model_forward(VIT_GMML_INPUTS_DOCSTRING)
|
593 |
+
@replace_return_docstrings(output_type=ViTGMMLModelOutput, config_class=_CONFIG_FOR_DOC)
|
594 |
+
def forward(
|
595 |
+
self,
|
596 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
597 |
+
noise: Optional[torch.FloatTensor] = None,
|
598 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
599 |
+
output_attentions: Optional[bool] = None,
|
600 |
+
output_hidden_states: Optional[bool] = None,
|
601 |
+
return_dict: Optional[bool] = None,
|
602 |
+
) -> Union[Tuple, ViTGMMLModelOutput]:
|
603 |
+
r"""
|
604 |
+
Returns:
|
605 |
+
|
606 |
+
Examples:
|
607 |
+
|
608 |
+
```python
|
609 |
+
>>> from transformers import AutoImageProcessor, ViTGMMLModel
|
610 |
+
>>> from PIL import Image
|
611 |
+
>>> import requests
|
612 |
+
|
613 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
614 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
615 |
+
|
616 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("erow/vit-gmml-base")
|
617 |
+
>>> model = ViTGMMLModel.from_pretrained("erow/vit-gmml-base")
|
618 |
+
|
619 |
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
620 |
+
>>> outputs = model(**inputs)
|
621 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
622 |
+
```"""
|
623 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
624 |
+
output_hidden_states = (
|
625 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
626 |
+
)
|
627 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
628 |
+
|
629 |
+
if pixel_values is None:
|
630 |
+
raise ValueError("You have to specify pixel_values")
|
631 |
+
|
632 |
+
# Prepare head mask if needed
|
633 |
+
# 1.0 in head_mask indicate we keep the head
|
634 |
+
# attention_probs has shape bsz x n_heads x N x N
|
635 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
636 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
637 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
638 |
+
|
639 |
+
embedding_output = self.embeddings(pixel_values, noise=noise)
|
640 |
+
|
641 |
+
encoder_outputs = self.encoder(
|
642 |
+
embedding_output,
|
643 |
+
head_mask=head_mask,
|
644 |
+
output_attentions=output_attentions,
|
645 |
+
output_hidden_states=output_hidden_states,
|
646 |
+
return_dict=return_dict,
|
647 |
+
)
|
648 |
+
sequence_output = encoder_outputs[0]
|
649 |
+
sequence_output = self.layernorm(sequence_output)
|
650 |
+
|
651 |
+
if not return_dict:
|
652 |
+
return (sequence_output, ) + encoder_outputs[1:]
|
653 |
+
|
654 |
+
return ViTGMMLModelOutput(
|
655 |
+
last_hidden_state=sequence_output,
|
656 |
+
hidden_states=encoder_outputs.hidden_states,
|
657 |
+
attentions=encoder_outputs.attentions,
|
658 |
+
)
|
659 |
+
|
660 |
+
|
661 |
+
class GMMLDecoder(nn.Module):
|
662 |
+
def __init__(self, in_dim, in_chans=3, patch_size=16):
|
663 |
+
super().__init__()
|
664 |
+
|
665 |
+
layers = [nn.Linear(in_dim, in_dim)]
|
666 |
+
layers.append(nn.GELU())
|
667 |
+
layers.append(nn.Linear(in_dim, in_dim))
|
668 |
+
layers.append(nn.GELU())
|
669 |
+
layers.append(nn.Linear(in_dim, in_dim))
|
670 |
+
layers.append(nn.GELU())
|
671 |
+
|
672 |
+
self.mlp = nn.Sequential(*layers)
|
673 |
+
self.apply(self._init_weights)
|
674 |
+
|
675 |
+
self.convTrans = nn.ConvTranspose2d(in_dim, in_chans, kernel_size=(patch_size, patch_size),
|
676 |
+
stride=(patch_size, patch_size))
|
677 |
+
|
678 |
+
|
679 |
+
def _init_weights(self, m):
|
680 |
+
if isinstance(m, nn.Linear):
|
681 |
+
torch.nn.init.normal_(m.weight, std=.02)
|
682 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
683 |
+
nn.init.constant_(m.bias, 0)
|
684 |
+
|
685 |
+
def forward(self, x):
|
686 |
+
x = self.mlp(x)
|
687 |
+
|
688 |
+
x_rec = x.transpose(1, 2)
|
689 |
+
out_sz = tuple( ( int(math.sqrt(x_rec.size()[2])) , int(math.sqrt(x_rec.size()[2])) ) )
|
690 |
+
x_rec = self.convTrans(x_rec.unflatten(2, out_sz))
|
691 |
+
return x_rec
|
692 |
+
|
693 |
+
|
694 |
+
@add_start_docstrings(
|
695 |
+
"""The ViTGMML Model transformer with the decoder on top for self-supervised pre-training.
|
696 |
+
|
697 |
+
<Tip>
|
698 |
+
|
699 |
+
Note that we provide a script to pre-train this model on custom data in our [examples
|
700 |
+
directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
|
701 |
+
|
702 |
+
</Tip>
|
703 |
+
|
704 |
+
""",
|
705 |
+
VIT_GMML_START_DOCSTRING,
|
706 |
+
)
|
707 |
+
class ViTGMMLForPreTraining(ViTGMMLPreTrainedModel):
|
708 |
+
def __init__(self, config):
|
709 |
+
super().__init__(config)
|
710 |
+
self.config = config
|
711 |
+
|
712 |
+
self.vit = ViTGMMLModel(config)
|
713 |
+
self.decoder = GMMLDecoder(config.hidden_size, config.num_channels, config.patch_size)
|
714 |
+
|
715 |
+
# Initialize weights and apply final processing
|
716 |
+
self.post_init()
|
717 |
+
|
718 |
+
def get_input_embeddings(self):
|
719 |
+
return self.vit.embeddings.patch_embeddings
|
720 |
+
|
721 |
+
def _prune_heads(self, heads_to_prune):
|
722 |
+
"""
|
723 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
724 |
+
class PreTrainedModel
|
725 |
+
"""
|
726 |
+
for layer, heads in heads_to_prune.items():
|
727 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
728 |
+
|
729 |
+
def patchify(self, pixel_values):
|
730 |
+
"""
|
731 |
+
Args:
|
732 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
733 |
+
Pixel values.
|
734 |
+
|
735 |
+
Returns:
|
736 |
+
`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`:
|
737 |
+
Patchified pixel values.
|
738 |
+
"""
|
739 |
+
patch_size, num_channels = self.config.patch_size, self.config.num_channels
|
740 |
+
# sanity checks
|
741 |
+
if (pixel_values.shape[2] != pixel_values.shape[3]) or (pixel_values.shape[2] % patch_size != 0):
|
742 |
+
raise ValueError("Make sure the pixel values have a squared size that is divisible by the patch size")
|
743 |
+
if pixel_values.shape[1] != num_channels:
|
744 |
+
raise ValueError(
|
745 |
+
"Make sure the number of channels of the pixel values is equal to the one set in the configuration"
|
746 |
+
)
|
747 |
+
|
748 |
+
# patchify
|
749 |
+
batch_size = pixel_values.shape[0]
|
750 |
+
num_patches_one_direction = pixel_values.shape[2] // patch_size
|
751 |
+
patchified_pixel_values = pixel_values.reshape(
|
752 |
+
batch_size, num_channels, num_patches_one_direction, patch_size, num_patches_one_direction, patch_size
|
753 |
+
)
|
754 |
+
patchified_pixel_values = torch.einsum("nchpwq->nhwpqc", patchified_pixel_values)
|
755 |
+
patchified_pixel_values = patchified_pixel_values.reshape(
|
756 |
+
batch_size, num_patches_one_direction * num_patches_one_direction, patch_size**2 * num_channels
|
757 |
+
)
|
758 |
+
return patchified_pixel_values
|
759 |
+
|
760 |
+
def unpatchify(self, patchified_pixel_values):
|
761 |
+
"""
|
762 |
+
Args:
|
763 |
+
patchified_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`:
|
764 |
+
Patchified pixel values.
|
765 |
+
|
766 |
+
Returns:
|
767 |
+
`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`:
|
768 |
+
Pixel values.
|
769 |
+
"""
|
770 |
+
patch_size, num_channels = self.config.patch_size, self.config.num_channels
|
771 |
+
num_patches_one_direction = int(patchified_pixel_values.shape[1] ** 0.5)
|
772 |
+
# sanity check
|
773 |
+
if num_patches_one_direction**2 != patchified_pixel_values.shape[1]:
|
774 |
+
raise ValueError("Make sure that the number of patches can be squared")
|
775 |
+
|
776 |
+
# unpatchify
|
777 |
+
batch_size = patchified_pixel_values.shape[0]
|
778 |
+
patchified_pixel_values = patchified_pixel_values.reshape(
|
779 |
+
batch_size,
|
780 |
+
num_patches_one_direction,
|
781 |
+
num_patches_one_direction,
|
782 |
+
patch_size,
|
783 |
+
patch_size,
|
784 |
+
num_channels,
|
785 |
+
)
|
786 |
+
patchified_pixel_values = torch.einsum("nhwpqc->nchpwq", patchified_pixel_values)
|
787 |
+
pixel_values = patchified_pixel_values.reshape(
|
788 |
+
batch_size,
|
789 |
+
num_channels,
|
790 |
+
num_patches_one_direction * patch_size,
|
791 |
+
num_patches_one_direction * patch_size,
|
792 |
+
)
|
793 |
+
return pixel_values
|
794 |
+
|
795 |
+
def forward_loss(self, pixel_values, pred, mask):
|
796 |
+
"""
|
797 |
+
Args:
|
798 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
799 |
+
Pixel values.
|
800 |
+
pred (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`:
|
801 |
+
Predicted pixel values.
|
802 |
+
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
803 |
+
Tensor indicating which patches are masked (1) and which are not (0).
|
804 |
+
|
805 |
+
Returns:
|
806 |
+
`torch.FloatTensor`: Pixel reconstruction loss.
|
807 |
+
"""
|
808 |
+
target = pixel_values
|
809 |
+
pred = self.unpatchify(pred)
|
810 |
+
|
811 |
+
loss = (pred - target) ** 2
|
812 |
+
|
813 |
+
loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
|
814 |
+
return loss
|
815 |
+
|
816 |
+
@add_start_docstrings_to_model_forward(VIT_GMML_INPUTS_DOCSTRING)
|
817 |
+
@replace_return_docstrings(output_type=ViTGMMLForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
818 |
+
def forward(
|
819 |
+
self,
|
820 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
821 |
+
noise: Optional[torch.FloatTensor] = None,
|
822 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
823 |
+
output_attentions: Optional[bool] = None,
|
824 |
+
output_hidden_states: Optional[bool] = None,
|
825 |
+
return_dict: Optional[bool] = None,
|
826 |
+
) -> Union[Tuple, ViTGMMLForPreTrainingOutput]:
|
827 |
+
r"""
|
828 |
+
Returns:
|
829 |
+
|
830 |
+
Examples:
|
831 |
+
|
832 |
+
```python
|
833 |
+
>>> from transformers import AutoImageProcessor, ViTGMMLForPreTraining
|
834 |
+
>>> from PIL import Image
|
835 |
+
>>> import requests
|
836 |
+
|
837 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
838 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
839 |
+
|
840 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("erow/vit-gmml-base")
|
841 |
+
>>> model = ViTGMMLForPreTraining.from_pretrained("erow/vit-gmml-base")
|
842 |
+
|
843 |
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
844 |
+
>>> outputs = model(**inputs)
|
845 |
+
>>> loss = outputs.loss
|
846 |
+
>>> mask = outputs.mask
|
847 |
+
>>> ids_restore = outputs.ids_restore
|
848 |
+
```"""
|
849 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
850 |
+
|
851 |
+
outputs = self.vit(
|
852 |
+
pixel_values,
|
853 |
+
head_mask=head_mask,
|
854 |
+
output_attentions=output_attentions,
|
855 |
+
output_hidden_states=output_hidden_states,
|
856 |
+
return_dict=return_dict,
|
857 |
+
)
|
858 |
+
|
859 |
+
latent = outputs.last_hidden_state
|
860 |
+
|
861 |
+
logits = self.decoder(latent) # shape (batch_size, num_patches, patch_size*patch_size*num_channels)
|
862 |
+
|
863 |
+
loss = self.forward_loss(pixel_values, logits, noise)
|
864 |
+
|
865 |
+
if not return_dict:
|
866 |
+
output = (logits, ) + outputs[2:]
|
867 |
+
return ((loss,) + output) if loss is not None else output
|
868 |
+
|
869 |
+
return ViTGMMLForPreTrainingOutput(
|
870 |
+
loss=loss,
|
871 |
+
logits=logits,
|
872 |
+
noise=noise,
|
873 |
+
hidden_states=outputs.hidden_states,
|
874 |
+
attentions=outputs.attentions,
|
875 |
+
)
|
876 |
+
|
877 |
+
|
878 |
+
if __name__=="__main__":
|
879 |
+
|
880 |
+
# Initializing a ViT MAE vit-mae-base style configuration
|
881 |
+
configuration = ViTGMMLConfig()
|
882 |
+
|
883 |
+
# Initializing a model (with random weights) from the vit-mae-base style configuration
|
884 |
+
model = ViTGMMLModel(configuration)
|
885 |
+
|
886 |
+
# Accessing the model configuration
|
887 |
+
configuration = model.config
|
888 |
+
|
889 |
+
x = torch.randn(1, 3, 224, 224)
|
890 |
+
output = model(x)
|