gent
commited on
Commit
·
5b5b080
1
Parent(s):
79ea85b
Add model files
Browse files- README.md +46 -0
- configuration_gmml.py +130 -0
- modeling_gmml.py +890 -0
README.md
CHANGED
|
@@ -1,3 +1,49 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- self-supervised learning
|
| 5 |
+
- vision
|
| 6 |
+
- GMML
|
| 7 |
+
inference: false
|
| 8 |
+
|
| 9 |
---
|
| 10 |
+
|
| 11 |
+
# Model description
|
| 12 |
+
|
| 13 |
+
GMML is a self-supervised learning model that learns to group masked pixels in an image. The model is trained on ImageNet-1K.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# Model Sources
|
| 17 |
+
|
| 18 |
+
- https://github.com/Sara-Ahmed/GMML
|
| 19 |
+
- https://arxiv.org/abs/2205.14986
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# Model Card Authors
|
| 23 |
+
Sara Atito, Muhammad Awais, Josef Kittler
|
| 24 |
+
|
| 25 |
+
# How to use
|
| 26 |
+
|
| 27 |
+
```python
|
| 28 |
+
from transformers import BertConfig, BertModel
|
| 29 |
+
|
| 30 |
+
config = BertConfig()
|
| 31 |
+
model = BertModel(config)
|
| 32 |
+
|
| 33 |
+
model.push_to_hub("nielsr/my-awesome-bert-model")
|
| 34 |
+
|
| 35 |
+
# reload
|
| 36 |
+
model = BertModel.from_pretrained("nielsr/my-awesome-bert-model")
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
# BibTeX entry and citation info
|
| 40 |
+
```
|
| 41 |
+
@inproceedings{atito2023gmml,
|
| 42 |
+
title={GMML is all you need},
|
| 43 |
+
author={Atito, Sara and Awais, Muhammed and Nandam, Srinivasa and Kittler, Josef},
|
| 44 |
+
booktitle={2023 IEEE International Conference on Image Processing (ICIP)},
|
| 45 |
+
pages={2125--2129},
|
| 46 |
+
year={2023},
|
| 47 |
+
organization={IEEE}
|
| 48 |
+
}
|
| 49 |
+
```
|
configuration_gmml.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 Facebook AI and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" ViT GMML model configuration"""
|
| 16 |
+
|
| 17 |
+
from transformers import PretrainedConfig
|
| 18 |
+
from transformers import logging
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
logger = logging.get_logger(__name__)
|
| 22 |
+
|
| 23 |
+
VIT_GMML_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
| 24 |
+
"erow/vit-GMML-base": "https://huggingface.co/erow/GMML/resolve/main/config.json",
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class ViTGMMLConfig(PretrainedConfig):
|
| 29 |
+
r"""
|
| 30 |
+
This is the configuration class to store the configuration of a [`ViTGMMLModel`]. It is used to instantiate an ViT
|
| 31 |
+
GMML model according to the specified arguments, defining the model architecture. Instantiating a configuration with
|
| 32 |
+
the defaults will yield a similar configuration to that of the ViT
|
| 33 |
+
|
| 34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 35 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 40 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 41 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 42 |
+
Number of hidden layers in the Transformer encoder.
|
| 43 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 44 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 45 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 46 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 47 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
| 48 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 49 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
| 50 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
| 51 |
+
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
|
| 52 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
| 53 |
+
The dropout ratio for the attention probabilities.
|
| 54 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 55 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 56 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
| 57 |
+
The epsilon used by the layer normalization layers.
|
| 58 |
+
image_size (`int`, *optional*, defaults to 224):
|
| 59 |
+
The size (resolution) of each image.
|
| 60 |
+
patch_size (`int`, *optional*, defaults to 16):
|
| 61 |
+
The size (resolution) of each patch.
|
| 62 |
+
num_channels (`int`, *optional*, defaults to 3):
|
| 63 |
+
The number of input channels.
|
| 64 |
+
qkv_bias (`bool`, *optional*, defaults to `True`):
|
| 65 |
+
Whether to add a bias to the queries, keys and values.
|
| 66 |
+
decoder_num_attention_heads (`int`, *optional*, defaults to 16):
|
| 67 |
+
Number of attention heads for each attention layer in the decoder.
|
| 68 |
+
decoder_hidden_size (`int`, *optional*, defaults to 512):
|
| 69 |
+
Dimensionality of the decoder.
|
| 70 |
+
decoder_num_hidden_layers (`int`, *optional*, defaults to 8):
|
| 71 |
+
Number of hidden layers in the decoder.
|
| 72 |
+
decoder_intermediate_size (`int`, *optional*, defaults to 2048):
|
| 73 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the decoder.
|
| 74 |
+
mask_ratio (`float`, *optional*, defaults to 0.75):
|
| 75 |
+
The ratio of the number of masked tokens in the input sequence.
|
| 76 |
+
norm_pix_loss (`bool`, *optional*, defaults to `False`):
|
| 77 |
+
Whether or not to train with normalized pixels (see Table 3 in the paper). Using normalized pixels improved
|
| 78 |
+
representation quality in the experiments of the authors.
|
| 79 |
+
|
| 80 |
+
Example:
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
+
>>> from transformers import ViTGMMLConfig, ViTGMMLModel
|
| 84 |
+
|
| 85 |
+
>>> # Initializing a ViT GMML vit-GMML-base style configuration
|
| 86 |
+
>>> configuration = ViTGMMLConfig()
|
| 87 |
+
|
| 88 |
+
>>> # Initializing a model (with random weights) from the vit-GMML-base style configuration
|
| 89 |
+
>>> model = ViTGMMLModel(configuration)
|
| 90 |
+
|
| 91 |
+
>>> # Accessing the model configuration
|
| 92 |
+
>>> configuration = model.config
|
| 93 |
+
```"""
|
| 94 |
+
|
| 95 |
+
model_type = "vit_gmml"
|
| 96 |
+
|
| 97 |
+
def __init__(
|
| 98 |
+
self,
|
| 99 |
+
hidden_size=768,
|
| 100 |
+
num_hidden_layers=12,
|
| 101 |
+
num_attention_heads=12,
|
| 102 |
+
intermediate_size=3072,
|
| 103 |
+
hidden_act="gelu",
|
| 104 |
+
hidden_dropout_prob=0.0,
|
| 105 |
+
attention_probs_dropout_prob=0.0,
|
| 106 |
+
initializer_range=0.02,
|
| 107 |
+
layer_norm_eps=1e-12,
|
| 108 |
+
image_size=224,
|
| 109 |
+
patch_size=16,
|
| 110 |
+
num_channels=3,
|
| 111 |
+
qkv_bias=True,
|
| 112 |
+
mask_ratio=0.75,
|
| 113 |
+
**kwargs,
|
| 114 |
+
):
|
| 115 |
+
super().__init__(**kwargs)
|
| 116 |
+
|
| 117 |
+
self.hidden_size = hidden_size
|
| 118 |
+
self.num_hidden_layers = num_hidden_layers
|
| 119 |
+
self.num_attention_heads = num_attention_heads
|
| 120 |
+
self.intermediate_size = intermediate_size
|
| 121 |
+
self.hidden_act = hidden_act
|
| 122 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
| 123 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
| 124 |
+
self.initializer_range = initializer_range
|
| 125 |
+
self.layer_norm_eps = layer_norm_eps
|
| 126 |
+
self.image_size = image_size
|
| 127 |
+
self.patch_size = patch_size
|
| 128 |
+
self.num_channels = num_channels
|
| 129 |
+
self.qkv_bias = qkv_bias
|
| 130 |
+
self.mask_ratio = mask_ratio
|
modeling_gmml.py
ADDED
|
@@ -0,0 +1,890 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 Facebook AI and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" PyTorch ViT GMML (masked autoencoder) model."""
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
import collections.abc
|
| 19 |
+
import math
|
| 20 |
+
from copy import deepcopy
|
| 21 |
+
from dataclasses import dataclass
|
| 22 |
+
from typing import Optional, Set, Tuple, Union
|
| 23 |
+
|
| 24 |
+
import numpy as np
|
| 25 |
+
import torch
|
| 26 |
+
import torch.utils.checkpoint
|
| 27 |
+
from torch import nn
|
| 28 |
+
|
| 29 |
+
from transformers.activations import ACT2FN
|
| 30 |
+
from transformers.modeling_outputs import BaseModelOutput
|
| 31 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 32 |
+
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
| 33 |
+
from transformers.utils import (
|
| 34 |
+
ModelOutput,
|
| 35 |
+
add_start_docstrings,
|
| 36 |
+
add_start_docstrings_to_model_forward,
|
| 37 |
+
logging,
|
| 38 |
+
replace_return_docstrings,
|
| 39 |
+
)
|
| 40 |
+
from configuration_gmml import ViTGMMLConfig
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
logger = logging.get_logger(__name__)
|
| 44 |
+
|
| 45 |
+
_CONFIG_FOR_DOC = "ViTGMMLConfig"
|
| 46 |
+
_CHECKPOINT_FOR_DOC = "erow/vit-gmml-base"
|
| 47 |
+
|
| 48 |
+
VIT_GMML_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 49 |
+
"erow/vit-gmml-base",
|
| 50 |
+
# See all ViTGMML models at https://huggingface.co/models?filter=vit_gmml
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
@dataclass
|
| 55 |
+
class ViTGMMLModelOutput(ModelOutput):
|
| 56 |
+
"""
|
| 57 |
+
Class for ViTGMMLModel's outputs, with potential hidden states and attentions.
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 61 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
| 62 |
+
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
| 63 |
+
Tensor indicating which patches are masked (1) and which are not (0).
|
| 64 |
+
ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 65 |
+
Tensor containing the original index of the (shuffled) masked patches.
|
| 66 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 67 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
| 68 |
+
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
|
| 69 |
+
plus the initial embedding outputs.
|
| 70 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 71 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 72 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
| 73 |
+
the self-attention heads.
|
| 74 |
+
"""
|
| 75 |
+
|
| 76 |
+
last_hidden_state: torch.FloatTensor = None
|
| 77 |
+
noise: torch.LongTensor = None
|
| 78 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 79 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
@dataclass
|
| 84 |
+
class ViTGMMLForPreTrainingOutput(ModelOutput):
|
| 85 |
+
"""
|
| 86 |
+
Class for ViTGMMLForPreTraining's outputs, with potential hidden states and attentions.
|
| 87 |
+
|
| 88 |
+
Args:
|
| 89 |
+
loss (`torch.FloatTensor` of shape `(1,)`):
|
| 90 |
+
Pixel reconstruction loss.
|
| 91 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`):
|
| 92 |
+
Pixel reconstruction logits.
|
| 93 |
+
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
| 94 |
+
Tensor indicating which patches are masked (1) and which are not (0).
|
| 95 |
+
ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 96 |
+
Tensor containing the original index of the (shuffled) masked patches.
|
| 97 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 98 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
| 99 |
+
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
|
| 100 |
+
plus the initial embedding outputs.
|
| 101 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 102 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 103 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
| 104 |
+
the self-attention heads.
|
| 105 |
+
"""
|
| 106 |
+
|
| 107 |
+
loss: Optional[torch.FloatTensor] = None
|
| 108 |
+
logits: torch.FloatTensor = None
|
| 109 |
+
noise: torch.LongTensor = None
|
| 110 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 111 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False):
|
| 115 |
+
"""
|
| 116 |
+
Create 2D sin/cos positional embeddings.
|
| 117 |
+
|
| 118 |
+
Args:
|
| 119 |
+
embed_dim (`int`):
|
| 120 |
+
Embedding dimension.
|
| 121 |
+
grid_size (`int`):
|
| 122 |
+
The grid height and width.
|
| 123 |
+
add_cls_token (`bool`, *optional*, defaults to `False`):
|
| 124 |
+
Whether or not to add a classification (CLS) token.
|
| 125 |
+
|
| 126 |
+
Returns:
|
| 127 |
+
(`torch.FloatTensor` of shape (grid_size*grid_size, embed_dim) or (1+grid_size*grid_size, embed_dim): the
|
| 128 |
+
position embeddings (with or without classification token)
|
| 129 |
+
"""
|
| 130 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
| 131 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
| 132 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
| 133 |
+
grid = np.stack(grid, axis=0)
|
| 134 |
+
|
| 135 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
| 136 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
| 137 |
+
if add_cls_token:
|
| 138 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
| 139 |
+
return pos_embed
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
| 143 |
+
if embed_dim % 2 != 0:
|
| 144 |
+
raise ValueError("embed_dim must be even")
|
| 145 |
+
|
| 146 |
+
# use half of dimensions to encode grid_h
|
| 147 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
| 148 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
| 149 |
+
|
| 150 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
| 151 |
+
return emb
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
| 155 |
+
"""
|
| 156 |
+
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
|
| 157 |
+
"""
|
| 158 |
+
if embed_dim % 2 != 0:
|
| 159 |
+
raise ValueError("embed_dim must be even")
|
| 160 |
+
|
| 161 |
+
omega = np.arange(embed_dim // 2, dtype=float)
|
| 162 |
+
omega /= embed_dim / 2.0
|
| 163 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
| 164 |
+
|
| 165 |
+
pos = pos.reshape(-1) # (M,)
|
| 166 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
| 167 |
+
|
| 168 |
+
emb_sin = np.sin(out) # (M, D/2)
|
| 169 |
+
emb_cos = np.cos(out) # (M, D/2)
|
| 170 |
+
|
| 171 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
| 172 |
+
return emb
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
class ViTGMMLEmbeddings(nn.Module):
|
| 176 |
+
"""
|
| 177 |
+
Construct the CLS token, position and patch embeddings.
|
| 178 |
+
|
| 179 |
+
"""
|
| 180 |
+
|
| 181 |
+
def __init__(self, config):
|
| 182 |
+
super().__init__()
|
| 183 |
+
|
| 184 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
| 185 |
+
self.patch_embeddings = ViTGMMLPatchEmbeddings(config)
|
| 186 |
+
self.num_patches = self.patch_embeddings.num_patches
|
| 187 |
+
# fixed sin-cos embedding
|
| 188 |
+
self.position_embeddings = nn.Parameter(
|
| 189 |
+
torch.zeros(1, self.num_patches + 1, config.hidden_size), requires_grad=False
|
| 190 |
+
)
|
| 191 |
+
self.config = config
|
| 192 |
+
self.initialize_weights()
|
| 193 |
+
|
| 194 |
+
def initialize_weights(self):
|
| 195 |
+
# initialize (and freeze) position embeddings by sin-cos embedding
|
| 196 |
+
pos_embed = get_2d_sincos_pos_embed(
|
| 197 |
+
self.position_embeddings.shape[-1], int(self.patch_embeddings.num_patches**0.5), add_cls_token=True
|
| 198 |
+
)
|
| 199 |
+
self.position_embeddings.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
|
| 200 |
+
|
| 201 |
+
# initialize patch_embeddings like nn.Linear (instead of nn.Conv2d)
|
| 202 |
+
w = self.patch_embeddings.projection.weight.data
|
| 203 |
+
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
| 204 |
+
|
| 205 |
+
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
|
| 206 |
+
torch.nn.init.normal_(self.cls_token, std=self.config.initializer_range)
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def forward(self, pixel_values, noise=None):
|
| 210 |
+
batch_size, num_channels, height, width = pixel_values.shape
|
| 211 |
+
embeddings = self.patch_embeddings(pixel_values)
|
| 212 |
+
|
| 213 |
+
# add position embeddings w/o cls token
|
| 214 |
+
embeddings = embeddings + self.position_embeddings[:, 1:, :]
|
| 215 |
+
|
| 216 |
+
# append cls token
|
| 217 |
+
cls_token = self.cls_token + self.position_embeddings[:, :1, :]
|
| 218 |
+
cls_tokens = cls_token.expand(embeddings.shape[0], -1, -1)
|
| 219 |
+
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
|
| 220 |
+
|
| 221 |
+
return embeddings
|
| 222 |
+
|
| 223 |
+
class ViTGMMLPatchEmbeddings(nn.Module):
|
| 224 |
+
"""
|
| 225 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
| 226 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
| 227 |
+
Transformer.
|
| 228 |
+
"""
|
| 229 |
+
|
| 230 |
+
def __init__(self, config):
|
| 231 |
+
super().__init__()
|
| 232 |
+
image_size, patch_size = config.image_size, config.patch_size
|
| 233 |
+
num_channels, hidden_size = config.num_channels, config.hidden_size
|
| 234 |
+
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
| 235 |
+
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
| 236 |
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
| 237 |
+
self.image_size = image_size
|
| 238 |
+
self.patch_size = patch_size
|
| 239 |
+
self.num_channels = num_channels
|
| 240 |
+
self.num_patches = num_patches
|
| 241 |
+
|
| 242 |
+
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
|
| 243 |
+
|
| 244 |
+
def forward(self, pixel_values):
|
| 245 |
+
batch_size, num_channels, height, width = pixel_values.shape
|
| 246 |
+
if num_channels != self.num_channels:
|
| 247 |
+
raise ValueError(
|
| 248 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
| 249 |
+
)
|
| 250 |
+
if height != self.image_size[0] or width != self.image_size[1]:
|
| 251 |
+
raise ValueError(
|
| 252 |
+
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
|
| 253 |
+
)
|
| 254 |
+
x = self.projection(pixel_values).flatten(2).transpose(1, 2)
|
| 255 |
+
return x
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention ViT->ViTGMML
|
| 259 |
+
class ViTGMMLSelfAttention(nn.Module):
|
| 260 |
+
def __init__(self, config: ViTGMMLConfig) -> None:
|
| 261 |
+
super().__init__()
|
| 262 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
| 263 |
+
raise ValueError(
|
| 264 |
+
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
|
| 265 |
+
f"heads {config.num_attention_heads}."
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
self.num_attention_heads = config.num_attention_heads
|
| 269 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
| 270 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 271 |
+
|
| 272 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
| 273 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
| 274 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
| 275 |
+
|
| 276 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 277 |
+
|
| 278 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
| 279 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
| 280 |
+
x = x.view(new_x_shape)
|
| 281 |
+
return x.permute(0, 2, 1, 3)
|
| 282 |
+
|
| 283 |
+
def forward(
|
| 284 |
+
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
|
| 285 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
| 286 |
+
mixed_query_layer = self.query(hidden_states)
|
| 287 |
+
|
| 288 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 289 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 290 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
| 291 |
+
|
| 292 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 293 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 294 |
+
|
| 295 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
| 296 |
+
|
| 297 |
+
# Normalize the attention scores to probabilities.
|
| 298 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
| 299 |
+
|
| 300 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 301 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 302 |
+
attention_probs = self.dropout(attention_probs)
|
| 303 |
+
|
| 304 |
+
# Mask heads if we want to
|
| 305 |
+
if head_mask is not None:
|
| 306 |
+
attention_probs = attention_probs * head_mask
|
| 307 |
+
|
| 308 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
| 309 |
+
|
| 310 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
| 311 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
| 312 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
| 313 |
+
|
| 314 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
| 315 |
+
|
| 316 |
+
return outputs
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->ViTGMML
|
| 320 |
+
class ViTGMMLSelfOutput(nn.Module):
|
| 321 |
+
"""
|
| 322 |
+
The residual connection is defined in ViTGMMLLayer instead of here (as is the case with other models), due to the
|
| 323 |
+
layernorm applied before each block.
|
| 324 |
+
"""
|
| 325 |
+
|
| 326 |
+
def __init__(self, config: ViTGMMLConfig) -> None:
|
| 327 |
+
super().__init__()
|
| 328 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 329 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 330 |
+
|
| 331 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
| 332 |
+
hidden_states = self.dense(hidden_states)
|
| 333 |
+
hidden_states = self.dropout(hidden_states)
|
| 334 |
+
|
| 335 |
+
return hidden_states
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->ViTGMML
|
| 339 |
+
class ViTGMMLAttention(nn.Module):
|
| 340 |
+
def __init__(self, config: ViTGMMLConfig) -> None:
|
| 341 |
+
super().__init__()
|
| 342 |
+
self.attention = ViTGMMLSelfAttention(config)
|
| 343 |
+
self.output = ViTGMMLSelfOutput(config)
|
| 344 |
+
self.pruned_heads = set()
|
| 345 |
+
|
| 346 |
+
def prune_heads(self, heads: Set[int]) -> None:
|
| 347 |
+
if len(heads) == 0:
|
| 348 |
+
return
|
| 349 |
+
heads, index = find_pruneable_heads_and_indices(
|
| 350 |
+
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
# Prune linear layers
|
| 354 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
| 355 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
| 356 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
| 357 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
| 358 |
+
|
| 359 |
+
# Update hyper params and store pruned heads
|
| 360 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
| 361 |
+
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
| 362 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 363 |
+
|
| 364 |
+
def forward(
|
| 365 |
+
self,
|
| 366 |
+
hidden_states: torch.Tensor,
|
| 367 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 368 |
+
output_attentions: bool = False,
|
| 369 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
| 370 |
+
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
|
| 371 |
+
|
| 372 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
| 373 |
+
|
| 374 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
| 375 |
+
return outputs
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate ViT->ViTGMML
|
| 379 |
+
class ViTGMMLIntermediate(nn.Module):
|
| 380 |
+
def __init__(self, config: ViTGMMLConfig) -> None:
|
| 381 |
+
super().__init__()
|
| 382 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 383 |
+
if isinstance(config.hidden_act, str):
|
| 384 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
| 385 |
+
else:
|
| 386 |
+
self.intermediate_act_fn = config.hidden_act
|
| 387 |
+
|
| 388 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 389 |
+
hidden_states = self.dense(hidden_states)
|
| 390 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
| 391 |
+
|
| 392 |
+
return hidden_states
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
# Copied from transformers.models.vit.modeling_vit.ViTOutput ViT->ViTGMML
|
| 396 |
+
class ViTGMMLOutput(nn.Module):
|
| 397 |
+
def __init__(self, config: ViTGMMLConfig) -> None:
|
| 398 |
+
super().__init__()
|
| 399 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 400 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 401 |
+
|
| 402 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
| 403 |
+
hidden_states = self.dense(hidden_states)
|
| 404 |
+
hidden_states = self.dropout(hidden_states)
|
| 405 |
+
|
| 406 |
+
hidden_states = hidden_states + input_tensor
|
| 407 |
+
|
| 408 |
+
return hidden_states
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->ViTGMML
|
| 412 |
+
class ViTGMMLLayer(nn.Module):
|
| 413 |
+
"""This corresponds to the Block class in the timm implementation."""
|
| 414 |
+
|
| 415 |
+
def __init__(self, config: ViTGMMLConfig) -> None:
|
| 416 |
+
super().__init__()
|
| 417 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
| 418 |
+
self.seq_len_dim = 1
|
| 419 |
+
self.attention = ViTGMMLAttention(config)
|
| 420 |
+
self.intermediate = ViTGMMLIntermediate(config)
|
| 421 |
+
self.output = ViTGMMLOutput(config)
|
| 422 |
+
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 423 |
+
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 424 |
+
|
| 425 |
+
def forward(
|
| 426 |
+
self,
|
| 427 |
+
hidden_states: torch.Tensor,
|
| 428 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 429 |
+
output_attentions: bool = False,
|
| 430 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
| 431 |
+
self_attention_outputs = self.attention(
|
| 432 |
+
self.layernorm_before(hidden_states), # in ViTGMML, layernorm is applied before self-attention
|
| 433 |
+
head_mask,
|
| 434 |
+
output_attentions=output_attentions,
|
| 435 |
+
)
|
| 436 |
+
attention_output = self_attention_outputs[0]
|
| 437 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
| 438 |
+
|
| 439 |
+
# first residual connection
|
| 440 |
+
hidden_states = attention_output + hidden_states
|
| 441 |
+
|
| 442 |
+
# in ViTGMML, layernorm is also applied after self-attention
|
| 443 |
+
layer_output = self.layernorm_after(hidden_states)
|
| 444 |
+
layer_output = self.intermediate(layer_output)
|
| 445 |
+
|
| 446 |
+
# second residual connection is done here
|
| 447 |
+
layer_output = self.output(layer_output, hidden_states)
|
| 448 |
+
|
| 449 |
+
outputs = (layer_output,) + outputs
|
| 450 |
+
|
| 451 |
+
return outputs
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->ViTGMML
|
| 455 |
+
class ViTGMMLEncoder(nn.Module):
|
| 456 |
+
def __init__(self, config: ViTGMMLConfig) -> None:
|
| 457 |
+
super().__init__()
|
| 458 |
+
self.config = config
|
| 459 |
+
self.layer = nn.ModuleList([ViTGMMLLayer(config) for _ in range(config.num_hidden_layers)])
|
| 460 |
+
self.gradient_checkpointing = False
|
| 461 |
+
|
| 462 |
+
def forward(
|
| 463 |
+
self,
|
| 464 |
+
hidden_states: torch.Tensor,
|
| 465 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 466 |
+
output_attentions: bool = False,
|
| 467 |
+
output_hidden_states: bool = False,
|
| 468 |
+
return_dict: bool = True,
|
| 469 |
+
) -> Union[tuple, BaseModelOutput]:
|
| 470 |
+
all_hidden_states = () if output_hidden_states else None
|
| 471 |
+
all_self_attentions = () if output_attentions else None
|
| 472 |
+
|
| 473 |
+
for i, layer_module in enumerate(self.layer):
|
| 474 |
+
if output_hidden_states:
|
| 475 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 476 |
+
|
| 477 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
| 478 |
+
|
| 479 |
+
if self.gradient_checkpointing and self.training:
|
| 480 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 481 |
+
layer_module.__call__,
|
| 482 |
+
hidden_states,
|
| 483 |
+
layer_head_mask,
|
| 484 |
+
output_attentions,
|
| 485 |
+
)
|
| 486 |
+
else:
|
| 487 |
+
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
|
| 488 |
+
|
| 489 |
+
hidden_states = layer_outputs[0]
|
| 490 |
+
|
| 491 |
+
if output_attentions:
|
| 492 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 493 |
+
|
| 494 |
+
if output_hidden_states:
|
| 495 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 496 |
+
|
| 497 |
+
if not return_dict:
|
| 498 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
| 499 |
+
return BaseModelOutput(
|
| 500 |
+
last_hidden_state=hidden_states,
|
| 501 |
+
hidden_states=all_hidden_states,
|
| 502 |
+
attentions=all_self_attentions,
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
class ViTGMMLPreTrainedModel(PreTrainedModel):
|
| 507 |
+
"""
|
| 508 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 509 |
+
models.
|
| 510 |
+
"""
|
| 511 |
+
|
| 512 |
+
config_class = ViTGMMLConfig
|
| 513 |
+
base_model_prefix = "vit"
|
| 514 |
+
main_input_name = "pixel_values"
|
| 515 |
+
supports_gradient_checkpointing = True
|
| 516 |
+
|
| 517 |
+
def _init_weights(self, module):
|
| 518 |
+
"""Initialize the weights"""
|
| 519 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 520 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 521 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 522 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 523 |
+
if module.bias is not None:
|
| 524 |
+
module.bias.data.zero_()
|
| 525 |
+
elif isinstance(module, nn.LayerNorm):
|
| 526 |
+
module.bias.data.zero_()
|
| 527 |
+
module.weight.data.fill_(1.0)
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
VIT_GMML_START_DOCSTRING = r"""
|
| 531 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
| 532 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
| 533 |
+
behavior.
|
| 534 |
+
|
| 535 |
+
Parameters:
|
| 536 |
+
config ([`ViTGMMLConfig`]): Model configuration class with all the parameters of the model.
|
| 537 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 538 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 539 |
+
"""
|
| 540 |
+
|
| 541 |
+
VIT_GMML_INPUTS_DOCSTRING = r"""
|
| 542 |
+
Args:
|
| 543 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 544 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
|
| 545 |
+
for details.
|
| 546 |
+
|
| 547 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 548 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 549 |
+
|
| 550 |
+
- 1 indicates the head is **not masked**,
|
| 551 |
+
- 0 indicates the head is **masked**.
|
| 552 |
+
|
| 553 |
+
output_attentions (`bool`, *optional*):
|
| 554 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 555 |
+
tensors for more detail.
|
| 556 |
+
output_hidden_states (`bool`, *optional*):
|
| 557 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 558 |
+
more detail.
|
| 559 |
+
return_dict (`bool`, *optional*):
|
| 560 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 561 |
+
"""
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
@add_start_docstrings(
|
| 565 |
+
"The bare ViTGMML Model transformer outputting raw hidden-states without any specific head on top.",
|
| 566 |
+
VIT_GMML_START_DOCSTRING,
|
| 567 |
+
)
|
| 568 |
+
class ViTGMMLModel(ViTGMMLPreTrainedModel):
|
| 569 |
+
def __init__(self, config):
|
| 570 |
+
super().__init__(config)
|
| 571 |
+
self.config = config
|
| 572 |
+
|
| 573 |
+
self.embeddings = ViTGMMLEmbeddings(config)
|
| 574 |
+
self.encoder = ViTGMMLEncoder(config)
|
| 575 |
+
|
| 576 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 577 |
+
|
| 578 |
+
# Initialize weights and apply final processing
|
| 579 |
+
self.post_init()
|
| 580 |
+
|
| 581 |
+
def get_input_embeddings(self):
|
| 582 |
+
return self.embeddings.patch_embeddings
|
| 583 |
+
|
| 584 |
+
def _prune_heads(self, heads_to_prune):
|
| 585 |
+
"""
|
| 586 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
| 587 |
+
class PreTrainedModel
|
| 588 |
+
"""
|
| 589 |
+
for layer, heads in heads_to_prune.items():
|
| 590 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
| 591 |
+
|
| 592 |
+
@add_start_docstrings_to_model_forward(VIT_GMML_INPUTS_DOCSTRING)
|
| 593 |
+
@replace_return_docstrings(output_type=ViTGMMLModelOutput, config_class=_CONFIG_FOR_DOC)
|
| 594 |
+
def forward(
|
| 595 |
+
self,
|
| 596 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 597 |
+
noise: Optional[torch.FloatTensor] = None,
|
| 598 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 599 |
+
output_attentions: Optional[bool] = None,
|
| 600 |
+
output_hidden_states: Optional[bool] = None,
|
| 601 |
+
return_dict: Optional[bool] = None,
|
| 602 |
+
) -> Union[Tuple, ViTGMMLModelOutput]:
|
| 603 |
+
r"""
|
| 604 |
+
Returns:
|
| 605 |
+
|
| 606 |
+
Examples:
|
| 607 |
+
|
| 608 |
+
```python
|
| 609 |
+
>>> from transformers import AutoImageProcessor, ViTGMMLModel
|
| 610 |
+
>>> from PIL import Image
|
| 611 |
+
>>> import requests
|
| 612 |
+
|
| 613 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 614 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 615 |
+
|
| 616 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("erow/vit-gmml-base")
|
| 617 |
+
>>> model = ViTGMMLModel.from_pretrained("erow/vit-gmml-base")
|
| 618 |
+
|
| 619 |
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
| 620 |
+
>>> outputs = model(**inputs)
|
| 621 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
| 622 |
+
```"""
|
| 623 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 624 |
+
output_hidden_states = (
|
| 625 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 626 |
+
)
|
| 627 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 628 |
+
|
| 629 |
+
if pixel_values is None:
|
| 630 |
+
raise ValueError("You have to specify pixel_values")
|
| 631 |
+
|
| 632 |
+
# Prepare head mask if needed
|
| 633 |
+
# 1.0 in head_mask indicate we keep the head
|
| 634 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 635 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
| 636 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
| 637 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 638 |
+
|
| 639 |
+
embedding_output = self.embeddings(pixel_values, noise=noise)
|
| 640 |
+
|
| 641 |
+
encoder_outputs = self.encoder(
|
| 642 |
+
embedding_output,
|
| 643 |
+
head_mask=head_mask,
|
| 644 |
+
output_attentions=output_attentions,
|
| 645 |
+
output_hidden_states=output_hidden_states,
|
| 646 |
+
return_dict=return_dict,
|
| 647 |
+
)
|
| 648 |
+
sequence_output = encoder_outputs[0]
|
| 649 |
+
sequence_output = self.layernorm(sequence_output)
|
| 650 |
+
|
| 651 |
+
if not return_dict:
|
| 652 |
+
return (sequence_output, ) + encoder_outputs[1:]
|
| 653 |
+
|
| 654 |
+
return ViTGMMLModelOutput(
|
| 655 |
+
last_hidden_state=sequence_output,
|
| 656 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 657 |
+
attentions=encoder_outputs.attentions,
|
| 658 |
+
)
|
| 659 |
+
|
| 660 |
+
|
| 661 |
+
class GMMLDecoder(nn.Module):
|
| 662 |
+
def __init__(self, in_dim, in_chans=3, patch_size=16):
|
| 663 |
+
super().__init__()
|
| 664 |
+
|
| 665 |
+
layers = [nn.Linear(in_dim, in_dim)]
|
| 666 |
+
layers.append(nn.GELU())
|
| 667 |
+
layers.append(nn.Linear(in_dim, in_dim))
|
| 668 |
+
layers.append(nn.GELU())
|
| 669 |
+
layers.append(nn.Linear(in_dim, in_dim))
|
| 670 |
+
layers.append(nn.GELU())
|
| 671 |
+
|
| 672 |
+
self.mlp = nn.Sequential(*layers)
|
| 673 |
+
self.apply(self._init_weights)
|
| 674 |
+
|
| 675 |
+
self.convTrans = nn.ConvTranspose2d(in_dim, in_chans, kernel_size=(patch_size, patch_size),
|
| 676 |
+
stride=(patch_size, patch_size))
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
def _init_weights(self, m):
|
| 680 |
+
if isinstance(m, nn.Linear):
|
| 681 |
+
torch.nn.init.normal_(m.weight, std=.02)
|
| 682 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 683 |
+
nn.init.constant_(m.bias, 0)
|
| 684 |
+
|
| 685 |
+
def forward(self, x):
|
| 686 |
+
x = self.mlp(x)
|
| 687 |
+
|
| 688 |
+
x_rec = x.transpose(1, 2)
|
| 689 |
+
out_sz = tuple( ( int(math.sqrt(x_rec.size()[2])) , int(math.sqrt(x_rec.size()[2])) ) )
|
| 690 |
+
x_rec = self.convTrans(x_rec.unflatten(2, out_sz))
|
| 691 |
+
return x_rec
|
| 692 |
+
|
| 693 |
+
|
| 694 |
+
@add_start_docstrings(
|
| 695 |
+
"""The ViTGMML Model transformer with the decoder on top for self-supervised pre-training.
|
| 696 |
+
|
| 697 |
+
<Tip>
|
| 698 |
+
|
| 699 |
+
Note that we provide a script to pre-train this model on custom data in our [examples
|
| 700 |
+
directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
|
| 701 |
+
|
| 702 |
+
</Tip>
|
| 703 |
+
|
| 704 |
+
""",
|
| 705 |
+
VIT_GMML_START_DOCSTRING,
|
| 706 |
+
)
|
| 707 |
+
class ViTGMMLForPreTraining(ViTGMMLPreTrainedModel):
|
| 708 |
+
def __init__(self, config):
|
| 709 |
+
super().__init__(config)
|
| 710 |
+
self.config = config
|
| 711 |
+
|
| 712 |
+
self.vit = ViTGMMLModel(config)
|
| 713 |
+
self.decoder = GMMLDecoder(config.hidden_size, config.num_channels, config.patch_size)
|
| 714 |
+
|
| 715 |
+
# Initialize weights and apply final processing
|
| 716 |
+
self.post_init()
|
| 717 |
+
|
| 718 |
+
def get_input_embeddings(self):
|
| 719 |
+
return self.vit.embeddings.patch_embeddings
|
| 720 |
+
|
| 721 |
+
def _prune_heads(self, heads_to_prune):
|
| 722 |
+
"""
|
| 723 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
| 724 |
+
class PreTrainedModel
|
| 725 |
+
"""
|
| 726 |
+
for layer, heads in heads_to_prune.items():
|
| 727 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
| 728 |
+
|
| 729 |
+
def patchify(self, pixel_values):
|
| 730 |
+
"""
|
| 731 |
+
Args:
|
| 732 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 733 |
+
Pixel values.
|
| 734 |
+
|
| 735 |
+
Returns:
|
| 736 |
+
`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`:
|
| 737 |
+
Patchified pixel values.
|
| 738 |
+
"""
|
| 739 |
+
patch_size, num_channels = self.config.patch_size, self.config.num_channels
|
| 740 |
+
# sanity checks
|
| 741 |
+
if (pixel_values.shape[2] != pixel_values.shape[3]) or (pixel_values.shape[2] % patch_size != 0):
|
| 742 |
+
raise ValueError("Make sure the pixel values have a squared size that is divisible by the patch size")
|
| 743 |
+
if pixel_values.shape[1] != num_channels:
|
| 744 |
+
raise ValueError(
|
| 745 |
+
"Make sure the number of channels of the pixel values is equal to the one set in the configuration"
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
# patchify
|
| 749 |
+
batch_size = pixel_values.shape[0]
|
| 750 |
+
num_patches_one_direction = pixel_values.shape[2] // patch_size
|
| 751 |
+
patchified_pixel_values = pixel_values.reshape(
|
| 752 |
+
batch_size, num_channels, num_patches_one_direction, patch_size, num_patches_one_direction, patch_size
|
| 753 |
+
)
|
| 754 |
+
patchified_pixel_values = torch.einsum("nchpwq->nhwpqc", patchified_pixel_values)
|
| 755 |
+
patchified_pixel_values = patchified_pixel_values.reshape(
|
| 756 |
+
batch_size, num_patches_one_direction * num_patches_one_direction, patch_size**2 * num_channels
|
| 757 |
+
)
|
| 758 |
+
return patchified_pixel_values
|
| 759 |
+
|
| 760 |
+
def unpatchify(self, patchified_pixel_values):
|
| 761 |
+
"""
|
| 762 |
+
Args:
|
| 763 |
+
patchified_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`:
|
| 764 |
+
Patchified pixel values.
|
| 765 |
+
|
| 766 |
+
Returns:
|
| 767 |
+
`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`:
|
| 768 |
+
Pixel values.
|
| 769 |
+
"""
|
| 770 |
+
patch_size, num_channels = self.config.patch_size, self.config.num_channels
|
| 771 |
+
num_patches_one_direction = int(patchified_pixel_values.shape[1] ** 0.5)
|
| 772 |
+
# sanity check
|
| 773 |
+
if num_patches_one_direction**2 != patchified_pixel_values.shape[1]:
|
| 774 |
+
raise ValueError("Make sure that the number of patches can be squared")
|
| 775 |
+
|
| 776 |
+
# unpatchify
|
| 777 |
+
batch_size = patchified_pixel_values.shape[0]
|
| 778 |
+
patchified_pixel_values = patchified_pixel_values.reshape(
|
| 779 |
+
batch_size,
|
| 780 |
+
num_patches_one_direction,
|
| 781 |
+
num_patches_one_direction,
|
| 782 |
+
patch_size,
|
| 783 |
+
patch_size,
|
| 784 |
+
num_channels,
|
| 785 |
+
)
|
| 786 |
+
patchified_pixel_values = torch.einsum("nhwpqc->nchpwq", patchified_pixel_values)
|
| 787 |
+
pixel_values = patchified_pixel_values.reshape(
|
| 788 |
+
batch_size,
|
| 789 |
+
num_channels,
|
| 790 |
+
num_patches_one_direction * patch_size,
|
| 791 |
+
num_patches_one_direction * patch_size,
|
| 792 |
+
)
|
| 793 |
+
return pixel_values
|
| 794 |
+
|
| 795 |
+
def forward_loss(self, pixel_values, pred, mask):
|
| 796 |
+
"""
|
| 797 |
+
Args:
|
| 798 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 799 |
+
Pixel values.
|
| 800 |
+
pred (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`:
|
| 801 |
+
Predicted pixel values.
|
| 802 |
+
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
| 803 |
+
Tensor indicating which patches are masked (1) and which are not (0).
|
| 804 |
+
|
| 805 |
+
Returns:
|
| 806 |
+
`torch.FloatTensor`: Pixel reconstruction loss.
|
| 807 |
+
"""
|
| 808 |
+
target = pixel_values
|
| 809 |
+
pred = self.unpatchify(pred)
|
| 810 |
+
|
| 811 |
+
loss = (pred - target) ** 2
|
| 812 |
+
|
| 813 |
+
loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
|
| 814 |
+
return loss
|
| 815 |
+
|
| 816 |
+
@add_start_docstrings_to_model_forward(VIT_GMML_INPUTS_DOCSTRING)
|
| 817 |
+
@replace_return_docstrings(output_type=ViTGMMLForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
| 818 |
+
def forward(
|
| 819 |
+
self,
|
| 820 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 821 |
+
noise: Optional[torch.FloatTensor] = None,
|
| 822 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 823 |
+
output_attentions: Optional[bool] = None,
|
| 824 |
+
output_hidden_states: Optional[bool] = None,
|
| 825 |
+
return_dict: Optional[bool] = None,
|
| 826 |
+
) -> Union[Tuple, ViTGMMLForPreTrainingOutput]:
|
| 827 |
+
r"""
|
| 828 |
+
Returns:
|
| 829 |
+
|
| 830 |
+
Examples:
|
| 831 |
+
|
| 832 |
+
```python
|
| 833 |
+
>>> from transformers import AutoImageProcessor, ViTGMMLForPreTraining
|
| 834 |
+
>>> from PIL import Image
|
| 835 |
+
>>> import requests
|
| 836 |
+
|
| 837 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 838 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 839 |
+
|
| 840 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("erow/vit-gmml-base")
|
| 841 |
+
>>> model = ViTGMMLForPreTraining.from_pretrained("erow/vit-gmml-base")
|
| 842 |
+
|
| 843 |
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
| 844 |
+
>>> outputs = model(**inputs)
|
| 845 |
+
>>> loss = outputs.loss
|
| 846 |
+
>>> mask = outputs.mask
|
| 847 |
+
>>> ids_restore = outputs.ids_restore
|
| 848 |
+
```"""
|
| 849 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 850 |
+
|
| 851 |
+
outputs = self.vit(
|
| 852 |
+
pixel_values,
|
| 853 |
+
head_mask=head_mask,
|
| 854 |
+
output_attentions=output_attentions,
|
| 855 |
+
output_hidden_states=output_hidden_states,
|
| 856 |
+
return_dict=return_dict,
|
| 857 |
+
)
|
| 858 |
+
|
| 859 |
+
latent = outputs.last_hidden_state
|
| 860 |
+
|
| 861 |
+
logits = self.decoder(latent) # shape (batch_size, num_patches, patch_size*patch_size*num_channels)
|
| 862 |
+
|
| 863 |
+
loss = self.forward_loss(pixel_values, logits, noise)
|
| 864 |
+
|
| 865 |
+
if not return_dict:
|
| 866 |
+
output = (logits, ) + outputs[2:]
|
| 867 |
+
return ((loss,) + output) if loss is not None else output
|
| 868 |
+
|
| 869 |
+
return ViTGMMLForPreTrainingOutput(
|
| 870 |
+
loss=loss,
|
| 871 |
+
logits=logits,
|
| 872 |
+
noise=noise,
|
| 873 |
+
hidden_states=outputs.hidden_states,
|
| 874 |
+
attentions=outputs.attentions,
|
| 875 |
+
)
|
| 876 |
+
|
| 877 |
+
|
| 878 |
+
if __name__=="__main__":
|
| 879 |
+
|
| 880 |
+
# Initializing a ViT MAE vit-mae-base style configuration
|
| 881 |
+
configuration = ViTGMMLConfig()
|
| 882 |
+
|
| 883 |
+
# Initializing a model (with random weights) from the vit-mae-base style configuration
|
| 884 |
+
model = ViTGMMLModel(configuration)
|
| 885 |
+
|
| 886 |
+
# Accessing the model configuration
|
| 887 |
+
configuration = model.config
|
| 888 |
+
|
| 889 |
+
x = torch.randn(1, 3, 224, 224)
|
| 890 |
+
output = model(x)
|