erickrribeiro's picture
update model card README.md
d0babcf
|
raw
history blame
1.98 kB
---
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
- generated_from_trainer
datasets:
- glue-ptpt
metrics:
- accuracy
- f1
model-index:
- name: paraphrase-bert-portuguese
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue-ptpt
type: glue-ptpt
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8725490196078431
- name: F1
type: f1
value: 0.9106529209621993
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# paraphrase-bert-portuguese
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the glue-ptpt dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6398
- Accuracy: 0.8725
- F1: 0.9107
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.4894 | 1.09 | 500 | 0.3384 | 0.8578 | 0.8945 |
| 0.2603 | 2.18 | 1000 | 0.5077 | 0.8799 | 0.9130 |
| 0.1316 | 3.27 | 1500 | 0.6398 | 0.8725 | 0.9107 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3