erickrribeiro's picture
update model card README.md
7cfa701
|
raw
history blame
1.98 kB
metadata
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
  - generated_from_trainer
datasets:
  - glue-ptpt
metrics:
  - accuracy
  - f1
model-index:
  - name: paraphrase-bert-portuguese
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue-ptpt
          type: glue-ptpt
          config: mrpc
          split: validation
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8848039215686274
          - name: F1
            type: f1
            value: 0.919104991394148

paraphrase-bert-portuguese

This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on the glue-ptpt dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7884
  • Accuracy: 0.8848
  • F1: 0.9191

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.1866 1.09 500 0.5935 0.8775 0.9104
0.1791 2.18 1000 0.6557 0.8676 0.9062
0.0676 3.27 1500 0.7884 0.8848 0.9191

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3