|
--- |
|
library_name: transformers |
|
language: |
|
- sw |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_17_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: stt-april-1 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 17 |
|
type: mozilla-foundation/common_voice_17_0 |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 26.149347116430903 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# stt-april-1 |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7422 |
|
- Wer Ortho: 32.1876 |
|
- Wer: 26.1493 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_steps: 50 |
|
- training_steps: 10000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |
|
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:-------:| |
|
| 0.6457 | 0.6180 | 500 | 0.6308 | 38.7728 | 31.6649 | |
|
| 0.3566 | 1.2361 | 1000 | 0.5699 | 36.3837 | 29.0941 | |
|
| 0.3687 | 1.8541 | 1500 | 0.5554 | 34.7230 | 27.5095 | |
|
| 0.2412 | 2.4722 | 2000 | 0.5469 | 31.7690 | 25.0986 | |
|
| 0.1654 | 3.0902 | 2500 | 0.6037 | 32.8070 | 26.1459 | |
|
| 0.172 | 3.7083 | 3000 | 0.5907 | 32.5790 | 25.2142 | |
|
| 0.1214 | 4.3263 | 3500 | 0.6065 | 31.8337 | 24.9354 | |
|
| 0.1488 | 4.9444 | 4000 | 0.6024 | 31.5376 | 24.9966 | |
|
| 0.1034 | 5.5624 | 4500 | 0.6288 | 32.1161 | 25.4931 | |
|
| 0.0818 | 6.1805 | 5000 | 0.6470 | 31.9051 | 25.5373 | |
|
| 0.0955 | 6.7985 | 5500 | 0.6566 | 32.1195 | 25.4795 | |
|
| 0.0744 | 7.4166 | 6000 | 0.6748 | 31.9153 | 25.6257 | |
|
| 0.0784 | 8.0346 | 6500 | 0.6908 | 32.3577 | 25.9759 | |
|
| 0.0684 | 8.6527 | 7000 | 0.6959 | 32.6538 | 26.3772 | |
|
| 0.0587 | 9.2707 | 7500 | 0.7318 | 32.2931 | 25.7991 | |
|
| 0.0656 | 9.8888 | 8000 | 0.7182 | 32.1467 | 25.8535 | |
|
| 0.0589 | 10.5068 | 8500 | 0.7361 | 32.4428 | 26.3500 | |
|
| 0.049 | 11.1248 | 9000 | 0.7597 | 32.3884 | 25.9827 | |
|
| 0.0562 | 11.7429 | 9500 | 0.7504 | 32.2318 | 25.7481 | |
|
| 0.0503 | 12.3609 | 10000 | 0.7422 | 32.1876 | 26.1493 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.3.1 |
|
- Tokenizers 0.21.0 |
|
|