Whisper Large v3 Fine-Tuned Finnish - CommonVoice13

This model is a fine-tuned version of openai/whisper-large-v3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3858
  • Wer: 21.6363

It achieves the following results on the Test set:

  • Eval_Wer: 21.636296705319342
  • Eval_NormalizedWer: 18.727590328215502

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 800
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0049 0.84 50 0.4045 27.8851
0.0264 1.68 100 0.4482 29.3852
0.0189 2.53 150 0.4076 26.6980
0.0129 3.37 200 0.3772 24.5905
0.0087 4.21 250 0.3875 25.5108
0.0054 5.05 300 0.3754 24.9034
0.0035 5.89 350 0.3742 23.5505
0.0014 6.74 400 0.3823 23.4677
0.0014 7.58 450 0.3914 23.5781
0.0012 8.42 500 0.3771 22.3173
0.0007 9.26 550 0.3812 21.8756
0.0002 10.11 600 0.3812 21.7191
0.0002 10.95 650 0.3825 21.6547
0.0001 11.79 700 0.3844 21.6363
0.0001 12.63 750 0.3854 21.5995
0.0001 13.47 800 0.3858 21.6363

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
14
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for enakilci/whisper-large-v3-fi-800steps-8batch-8grad_steps-5e-05lr

Finetuned
(353)
this model