enakilci's picture
Update ReadMe.md
d2d7e66 verified
metadata
language:
  - fi
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Large v3 Fine-Tuned Finnish
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 13.0
          type: mozilla-foundation/common_voice_13_0
          config: fi
          split: test
        metrics:
          - name: Wer
            type: wer
            value: 19.482790355236517

Whisper Large v3 Fine-Tuned Finnish

This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2128
  • Wer: 19.4828

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 800
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6193 0.21 50 0.2905 29.1920
0.3515 0.42 100 0.3581 32.2014
0.3433 0.63 150 0.3497 43.9812
0.3196 0.84 200 0.3080 27.9956
0.2597 1.05 250 0.3213 27.5630
0.1368 1.26 300 0.3088 29.0263
0.1316 1.47 350 0.3018 27.0569
0.1193 1.68 400 0.2948 28.5846
0.1219 1.89 450 0.2608 25.1979
0.0738 2.11 500 0.2645 30.9682
0.042 2.32 550 0.2493 23.2008
0.0406 2.53 600 0.2589 21.6823
0.0317 2.74 650 0.2391 24.9862
0.0336 2.95 700 0.2217 21.6639
0.0127 3.16 750 0.2126 20.3939
0.0085 3.37 800 0.2128 19.4828

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.0