Initial commit
Browse files- .gitattributes +1 -0
- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +20 -20
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1738.23 +/- 118.97
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adca8d7988170e9a95c59cd04c42784a344cf34cea91b0c8b7321a21d163f762
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -59,12 +59,12 @@
|
|
59 |
"_np_random": null
|
60 |
},
|
61 |
"n_envs": 4,
|
62 |
-
"num_timesteps":
|
63 |
"_total_timesteps": 2000000,
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
-
"start_time":
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
@@ -73,7 +73,7 @@
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
-
":serialized:": "
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -81,21 +81,21 @@
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
-
":serialized:": "
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
88 |
"sde_sample_freq": -1,
|
89 |
-
"_current_progress_remaining": 0.
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
-
":serialized:": "
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
96 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
},
|
98 |
-
"_n_updates":
|
99 |
"n_steps": 8,
|
100 |
"gamma": 0.99,
|
101 |
"gae_lambda": 0.9,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa466b968b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa466b96940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa466b969d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa466b96a60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa466b96af0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa466b96b80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa466b96c10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa466b96ca0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa466b96d30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa466b96dc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa466b96e50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa466b96ee0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fa466bacb40>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
59 |
"_np_random": null
|
60 |
},
|
61 |
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
"_total_timesteps": 2000000,
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
+
"start_time": 1679918498233410769,
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEh0dD9fOms/fs8gv4b7J78pF0w/nzSHv+MvGD8+y4C9RQu3P1oBvr9HQYi/gG70vboYqj9nO7G/cEwJv/9ybMAeit8/X8gTwO6LOL54ZOa/2O8dv5GKEj/rDJy+8GAZwDLCVL+ORc+/xUmMPig5wL9vVOk+za2ePp69oz5SQ5c/7DXGvv3iuT9hMjc/N13avvAbfr9mH7G+PEUMv7lz7b/sop++vlfIP3Vvqr+eQFg+ffYYvyaBFb2SSQQ/GUU3vwRoO78wQ/q+SLmbvrZHiz4ywlS/jhceP8VJjD7rdyo/XJVdvho7G76BYjM/QYVOv8NW8z7bvlLA1ER2vXgyiz85aXs/m125P0OLnz0z+rg/ojVBv6nv/7+dn6q9khIiQIMLgj8rcqM/+WTqvs6B7b+KTsC91iruP4xnib9sIby/MsJUv45Fz7/FSYw+KDnAv0QVjr2GCGa/91RmP9AcxT4KPhQ/ExVuP+IDkj4mVbO+QwrDPYaLWb/EvRQ/+R0GvyV+sb+O1kQ/HSNIv6DqC7/8WEe/0IaCP5IPCj/IfJI8HM7KPpXk874eMJc+es0PPjLCVL+OFx4/xUmMPut3Kj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADMByM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEHyXvQAAAADdufK/AAAAACLSkr0AAAAAJi3oPwAAAAAsVRQ9AAAAAApX/D8AAAAAufOEvQAAAAAQRu2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhGt8NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMHS6L0AAAAA7O7vvwAAAAAV9Lq9AAAAADrMAEAAAAAABu6MOwAAAACk9/Y/AAAAABkzubsAAAAAAkT7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALFpbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBsmPE7AAAAAOgi/78AAAAAxBRJvQAAAABfwfQ/AAAAAHidh70AAAAA8rPqPwAAAADwVrI9AAAAAMMw378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTr4Y0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANGIjvQAAAADlCQHAAAAAAAlPBL4AAAAAxpLmPwAAAABfNR87AAAAAD6K3T8AAAAAMm7BvQAAAAB9Gt+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
88 |
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJk7zCfpUxWMAWyUTegDjAF0lEdArImK4J/oaHV9lChoBkdAmXMtm16VuGgHTegDaAhHQKyLZBHCoCN1fZQoaAZHQJMqpikO7QNoB03oA2gIR0Cskq7LlmvodX2UKGgGR0CVa/dOIqLCaAdN6ANoCEdArJTb59E1EXV9lChoBkdAlPCDbvgFYGgHTegDaAhHQKyXM38XN1R1fZQoaAZHQIxXqX6ZYxNoB03oA2gIR0CsmgdLQHAzdX2UKGgGR0CBjp/o7muDaAdN6ANoCEdArKMlPtUn5XV9lChoBkdAhmM9NnGsFWgHTegDaAhHQKylPIKc/dJ1fZQoaAZHQIDZCWNWEK5oB03oA2gIR0Cspsyy+pOvdX2UKGgGR0CTBFb+cYqHaAdN6ANoCEdArKi3Uaya/nV9lChoBkdAmPvsO9WZJGgHTegDaAhHQKyv49CeEqV1fZQoaAZHQJYBlMURFqloB03oA2gIR0CssfrbHp8ndX2UKGgGR0CSo0sBhhH9aAdN6ANoCEdArLN8unMt9XV9lChoBkdAmWMv3ai9I2gHTegDaAhHQKy2ZUG3WnV1fZQoaAZHQKB/ptu1ndxoB03oA2gIR0CswJZ4wAU+dX2UKGgGR0CgrGHIp6QeaAdN6ANoCEdArMLLabnX/nV9lChoBkdAoJO01fmcOWgHTegDaAhHQKzEWn752yN1fZQoaAZHQKCMH1klNURoB03oA2gIR0Csxkjmjj7zdX2UKGgGR0CgRMo24uscaAdN6ANoCEdArM1WCVbA13V9lChoBkdAoFjQ7ihnJ2gHTegDaAhHQKzPexJNCZ51fZQoaAZHQKAo18IAwPBoB03oA2gIR0Cs0Qm96C17dX2UKGgGR0Cdxzlj3EhraAdN6ANoCEdArNMg6IWP93V9lChoBkdAm+Dtv863iWgHTegDaAhHQKzd+OWBz3h1fZQoaAZHQJpF0F6iTMdoB03oA2gIR0Cs4BfD1oQGdX2UKGgGR0CaeCQ6p5u7aAdN6ANoCEdArOG0pAlfJHV9lChoBkdAmyW+uzQeFWgHTegDaAhHQKzjtMNc4YJ1fZQoaAZHQJgz3kYGdI5oB03oA2gIR0Cs6qqGtZFHdX2UKGgGR0CWr+hm5DqoaAdN6ANoCEdArOzPIdU83nV9lChoBkdAlwh71ZkkKWgHTegDaAhHQKzuUSidrft1fZQoaAZHQJaq5jJ+2E1oB03oA2gIR0Cs8CeFL39KdX2UKGgGR0CeH9GUOd5IaAdN6ANoCEdArPqtC3PRiXV9lChoBkdAnMBD9wWFe2gHTegDaAhHQKz9ia3I+4d1fZQoaAZHQJr6I1m8M/hoB03oA2gIR0Cs/wtFa0QcdX2UKGgGR0CfCljawljWaAdN6ANoCEdArQDp//echHV9lChoBkdAnOkXJ5mh/WgHTegDaAhHQK0IBiONo8J1fZQoaAZHQJ7ALMcIZ65oB03oA2gIR0CtCidQXQ+mdX2UKGgGR0Cde3cs189faAdN6ANoCEdArQuvc8DB/XV9lChoBkdAnn9naN+9amgHTegDaAhHQK0NkskIHC51fZQoaAZHQJ27E2/BWPtoB03oA2gIR0CtF0y5I6KcdX2UKGgGR0CfHyHcUM5PaAdN6ANoCEdArRrAyXUpeHV9lChoBkdAn4NdKRMewWgHTegDaAhHQK0cn7sv7Fd1fZQoaAZHQJ+0Lfm9xqBoB03oA2gIR0CtHn8Oby6MdX2UKGgGR0Cdh7uIhyKfaAdN6ANoCEdArSWEzXSSeXV9lChoBkdAnqknJtBOYmgHTegDaAhHQK0nlBOYYzl1fZQoaAZHQJ2rtdv863loB03oA2gIR0CtKR/z8P4EdX2UKGgGR0CcE+80DU3GaAdN6ANoCEdArSsB6MR6GHV9lChoBkdAoNlJu/Dcd2gHTegDaAhHQK0zmTAWSEF1fZQoaAZHQKCXDtNSIgxoB03oA2gIR0CtNwItcv/SdX2UKGgGR0CgfHjc/MW5aAdN6ANoCEdArTl2LR8c/HV9lChoBkdAoOFp5mh/RWgHTegDaAhHQK0741IAfdR1fZQoaAZHQJotoduHerNoB03oA2gIR0CtQs2UbDMvdX2UKGgGR0CeIJ8aXKKYaAdN6ANoCEdArUTtXko4MnV9lChoBkdAn9/NZid8RmgHTegDaAhHQK1GiZWJaaF1fZQoaAZHQJibGN0eU6hoB03oA2gIR0CtSHB19v0idX2UKGgGR0CeypK9PDYRaAdN6ANoCEdArU/zPjXFtXV9lChoBkdAnNpyFCb+cmgHTegDaAhHQK1TOZ2pyZN1fZQoaAZHQJxxNAUtZmtoB03oA2gIR0CtVb238XN1dX2UKGgGR0CZV919fCyhaAdN6ANoCEdArVjHbAUL2HV9lChoBkdAl/aQqVhTfmgHTegDaAhHQK1gReRgZ0l1fZQoaAZHQJWNYxFiKBNoB03oA2gIR0CtYmdELH+7dX2UKGgGR0CVMzkq+ajOaAdN6ANoCEdArWPy2v0ROHV9lChoBkdAll9NOEdvKmgHTegDaAhHQK1lwvGIbfh1fZQoaAZHQJwzq0Y0l7doB03oA2gIR0CtbKxNZeRgdX2UKGgGR0CcaihKlHjIaAdN6ANoCEdArW9ZiRW913V9lChoBkdAnDhf6GgzxmgHTegDaAhHQK1xqvwmVqx1fZQoaAZHQJvdTFKkEcNoB03oA2gIR0CtdKuDaoMsdX2UKGgGR0CcPr8neBQOaAdN6ANoCEdArX2Poouwo3V9lChoBkdAmiicwYcebWgHTegDaAhHQK1/r9If8uV1fZQoaAZHQJxk6LBKtgdoB03oA2gIR0CtgS+ruIAPdX2UKGgGR0CbmOpAD7qIaAdN6ANoCEdArYMIgq3EynV9lChoBkdAmfj10PpY92gHTegDaAhHQK2KEzw+dLB1fZQoaAZHQJuXipsGgSRoB03oA2gIR0CtjD3Ux20RdX2UKGgGR0CaXhzfaYeDaAdN6ANoCEdArY4euLaVU3V9lChoBkdAmEnBcAzYVmgHTegDaAhHQK2Q9+aScLB1fZQoaAZHQJj+lG2CulpoB03oA2gIR0CtmwTPSlWPdX2UKGgGR0CawgnVG0/oaAdN6ANoCEdArZ0gaYNRWXV9lChoBkdAmzJCXUpd8mgHTegDaAhHQK2em6YE4ed1fZQoaAZHQJzKy/ag261oB03oA2gIR0CtoG4e1a4ddX2UKGgGR0Cdy7VjqfOEaAdN6ANoCEdAraeBCIDYAnV9lChoBkdAm+jY73fygGgHTegDaAhHQK2pt5oGpuN1fZQoaAZHQJ8KPiJfplloB03oA2gIR0Ctq0G7rcCYdX2UKGgGR0Cezfc4HX2/aAdN6ANoCEdAra2WtKZlWnV9lChoBkdAniFDPfKp1mgHTegDaAhHQK24VfpD/l11fZQoaAZHQJ/fJ2vB7/poB03oA2gIR0CtumjtG/etdX2UKGgGR0CfrumCROk+aAdN6ANoCEdArbvvgYP5HnV9lChoBkdAnGK0fgaWHGgHTegDaAhHQK29wrHU+cJ1fZQoaAZHQJnUSdoWYWtoB03oA2gIR0CtxOby6MBIdX2UKGgGR0CV+P25xzaLaAdN6ANoCEdArccGHSF493V9lChoBkdAlnC8asIVumgHTegDaAhHQK3Ilttygf51fZQoaAZHQJKKPyAhB7hoB03oA2gIR0CtynvZRKpUdX2UKGgGR0CWWBCGN70GaAdN6ANoCEdArdVBnpSrHXV9lChoBkdAmYvwzguRLmgHTegDaAhHQK3X6/336AR1fZQoaAZHQJmxhY2bXpZoB03oA2gIR0Ct2W4Xwb2ldX2UKGgGR0Ca8k82aUiZaAdN6ANoCEdArdtHEQ5FPXV9lChoBkdAmzdq+vhZQ2gHTegDaAhHQK3ib1anrIJ1fZQoaAZHQJap5hw2l2xoB03oA2gIR0Ct5IdVFQVLdX2UKGgGR0CZVEwb2lEaaAdN6ANoCEdAreYSoMrmQ3V9lChoBkdAnR1ZBgNPQGgHTegDaAhHQK3n95Ec81Z1fZQoaAZHQJxhxlI3BHloB03oA2gIR0Ct8ZBbnoxIdX2UKGgGR0CeJXAv+OwQaAdN6ANoCEdArfT/sAvL5nVlLg=="
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
96 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
},
|
98 |
+
"_n_updates": 62500,
|
99 |
"n_steps": 8,
|
100 |
"gamma": 0.99,
|
101 |
"gae_lambda": 0.9,
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5986d640b1195dfce31a87301d7db6b977008b21cd378a606d9dc8cd45b2aeea
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56958
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b2c539aea72fbfa6c7f1e7ba810312761821cd28d43350b52728bc9641b87a1
|
3 |
size 56958
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6aecebe280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6aecebe310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6aecebe3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6aecebe430>", "_build": "<function ActorCriticPolicy._build at 0x7f6aecebe4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6aecebe550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6aecebe5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6aecebe670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6aecebe700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6aecebe790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6aecebe820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6aecebe8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6aecebf7c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 171128, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679912482774828108, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJKFbT9ItYw/UIfFPCbdH7+/tw6/CJ5JPiStU7/+6Mm+oHovv1WTlD7khDA+xthGvjxqLD/dZJa9DZ1xPp3qj73tTIe/hRAHvXTzaL61XEa+lvOjP8JUUD8t0AJAeaXsvaYOgj6oMX8+OrQUwPdV2z5owWq9sDpCv6JhOj4klk68KVkjP5A94z0SxmG+4XOEPXVlor4Rl7694BTIvkJttz2pEti7kF2/PV7Pbz49NZw9vG8DP+Uworz1L1K+ZLaCPggZ4T9ftwu+5i77u/59l7qmDoI+qDF/PnBb3D73Vds+MD2RO5Pm8b5Ksr4++RGlvudmvb5bDeK9nsTgu/qNAL7LWjc+X+kBwJVpI7+NX14/7VUGP1KGHz7DH24+wpFnPSIhFz9ksU5A0E63Pkc7DjzaJN8/qgxdPwqVsz04Hoy+WvN7wKgxfz46tBTA91XbPjBKQz8X02W/VWp1PfnJD0GyQ+bA/9tkv6Lz2D1v7Oy8AD/3PtvWn0BcsAc+FL1CP3sQiL9svAhANzWGvuWIaT9yXtq/V5U7P+kFo73UxwdAHgSeP8IaYkB33DG/qzbnPqYOgj5+Z4DAcFvcPoBlFcCUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAVWs01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJD5CPQAAAACHmvu/AAAAAKdVijwAAAAAp0n7PwAAAACEJ5w8AAAAAGKl7T8AAAAAdzydvQAAAADqB+2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv4j8NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOO4dT0AAAAAbgL7vwAAAADx/Jy9AAAAAI6z+j8AAAAAl5jBPQAAAADGNes/AAAAAL0YAr4AAAAAmVvyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJEnj7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC/neu8AAAAABfK578AAAAA5qfXvQAAAAB45fo/AAAAAG7TPjsAAAAAHgrePwAAAACAquA9AAAAAFLG8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqS9E1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAheH6PQAAAADb4e+/AAAAAClWYz0AAAAAAtbZPwAAAADW+/g9AAAAADEi+z8AAAAAorkuvAAAAACjjPS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.914448, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIAwJZr56+qMAWyUTegDjAF0lEdAZgNuNxVAA3V9lChoBkdAaY6Z3LV4HGgHTacBaAhHQGYF6YE4ecR1fZQoaAZHQBUPbO/tY0VoB0sUaAhHQGYHiNbTtsx1fZQoaAZHQBjDBVMmF8JoB0sUaAhHQGYJ75mAbyZ1fZQoaAZHQBf+7pV0cOtoB0sVaAhHQGYLr5RCQcR1fZQoaAZHQBOPl2eQMhJoB0sUaAhHQGYPkUsWfsh1fZQoaAZHQIEVfmNipehoB03oA2gIR0BmaHldTo+wdX2UKGgGR0CHc9EIgNgCaAdN6ANoCEdAZoPVsk6cRXV9lChoBkdAgddH8TBZZGgHTRADaAhHQGbKGkep4r11fZQoaAZHQIdjvlQuVX5oB03oA2gIR0BnFV/8VHnVdX2UKGgGR0CIWCkX1rZbaAdN6ANoCEdAZ2+vW6K+BnV9lChoBkdAhkVyLAHmimgHTegDaAhHQGeDcriEQGx1fZQoaAZHQIbOMmKIi1RoB03oA2gIR0Bns7GR3eN2dX2UKGgGR0CIeUi35N48aAdN6ANoCEdAZ+aZYxL0z3V9lChoBkdAc73xs2vSt2gHTboBaAhHQGgQgXMyJsR1fZQoaAZHQIa4mKAJ9iNoB03oA2gIR0BoQneenQ6ZdX2UKGgGR0CEKK5+6RQraAdN6ANoCEdAaFpjpcHGCXV9lChoBkdAbh8XIEKVp2gHTUgBaAhHQGiiRW912aF1fZQoaAZHQB/onF5v9+BoB0sUaAhHQGio0iQkond1fZQoaAZHQCExRKpT/AFoB0sWaAhHQGivzDn/1g91fZQoaAZHQIMCPCbc45toB03oA2gIR0Bo73jGT9sKdX2UKGgGR0CGglVwPy08aAdN6ANoCEdAaRveYUnG83V9lChoBkdAgN9J2+wkgWgHTQEDaAhHQGkw4SpR4yJ1fZQoaAZHQFb/bVBlcyFoB0u5aAhHQGlXY7q6e5F1fZQoaAZHQIWfOUliSaFoB03oA2gIR0BpmSgwoLG8dX2UKGgGR0Adu5/b0voNaAdLGGgIR0BpnlzbN8mbdX2UKGgGR0BxeDbwjMV2aAdNwQFoCEdAabSyKNyYHHV9lChoBkdAfhnDej2zwGgHTegDaAhHQGnC5bQkX1t1fZQoaAZHQIglG3z+WGBoB03oA2gIR0Bp7JfnfVI7dX2UKGgGR0B/GqzPa+N+aAdNCANoCEdAano0CzTnaHV9lChoBkdAHC4Vh1DBuWgHSxRoCEdAaoBHMlkYoHV9lChoBkdAguG3VTaTOmgHTegDaAhHQGqKJf6XSjR1fZQoaAZHQIcdO76Hj6xoB03oA2gIR0Bqq8LYwqRVdX2UKGgGR0CDMBb9qDbraAdN6ANoCEdAavTsZ5zHTHV9lChoBkdAhhihmGucMGgHTegDaAhHQGtyLwF1SwZ1fZQoaAZHQIRBMYyfthNoB03oA2gIR0BreEEX+ERKdX2UKGgGR0CFFRJPqLTAaAdN6ANoCEdAa45m1YyO73V9lChoBkdAguSTfaYeDGgHTegDaAhHQGvD7gjyFwl1fZQoaAZHQGvws3IdU85oB01xAWgIR0Br2YFgUlAvdX2UKGgGR0BwKnH7xd6caAdNxgFoCEdAbEZDpC8e0XV9lChoBkdAh+MtvOyE+WgHTegDaAhHQGxSPxH5Jsh1fZQoaAZHQIeXc9IPK+1oB03oA2gIR0BsWtyLhrFgdX2UKGgGR0A5JPeHi3ocaAdLUGgIR0BsXbwc5sCUdX2UKGgGR0CCbhylvZRLaAdN6ANoCEdAbM9S3LFGX3V9lChoBkdAhMv82Jiy6mgHTegDaAhHQG1QgtOEdvN1fZQoaAZHQIJ5NB2OhkBoB03oA2gIR0BtVyHKwIMSdX2UKGgGR0CEYEwpvxYraAdN6ANoCEdAbVkQPI4lyHV9lChoBkdAhtY1loUSI2gHTegDaAhHQG2lAeq7yx11fZQoaAZHQIaxVMCcPOJoB03oA2gIR0BuMeiYb83udX2UKGgGR0CDvZALy+YdaAdN6ANoCEdAbjsUA1ejVXV9lChoBkdAg2VF4LThHmgHTegDaAhHQG49s4T9KmN1fZQoaAZHQH0zquOjqOdoB03oA2gIR0Busegam4y5dX2UKGgGR0CG+6imEXchaAdN6ANoCEdAby5lV94NZ3V9lChoBkdAhJkdroGIK2gHTegDaAhHQG80nWSU1Q91fZQoaAZHQIWu56Y3Ns5oB03oA2gIR0BvNm/5+H8CdX2UKGgGR0CHk74Fiay9aAdN6ANoCEdAb4JZ1V5rxnV9lChoBkdAhUcUyYXwb2gHTegDaAhHQHAHdbcGkep1fZQoaAZHQH8E6PsAvL5oB03oA2gIR0BwC/jwQUYbdX2UKGgGR0CA/zklu3tsaAdN6ANoCEdAcA1Nr0rbxnV9lChoBkdAgf4fMOf/WGgHTegDaAhHQHBGswpON5t1fZQoaAZHQIUTo7T2FnJoB03oA2gIR0BwhsvoNd7fdX2UKGgGR0CDMjHEuQIVaAdN6ANoCEdAcIn2Q4jrzHV9lChoBkdAgTDpDmbLEGgHTegDaAhHQHCK4YaYNRZ1fZQoaAZHQIV2870WdmRoB03oA2gIR0BwsCt1ZDArdX2UKGgGR0CGWx8PWhAXaAdN6ANoCEdAcPHaPS2H+XV9lChoBkdAhUO9vjwQUmgHTegDaAhHQHD2jEBKcut1fZQoaAZHQIXRCUA1ejVoB03oA2gIR0Bw9+knCwbEdX2UKGgGR0CBic7JW/8EaAdN6ANoCEdAcTDj9n9NvnV9lChoBkdAg0PZa/yoXWgHTegDaAhHQHF0c5n13+x1fZQoaAZHQIjGpNATqSpoB03oA2gIR0Bxd4MrmQr+dX2UKGgGR0CIGoHObAk+aAdN6ANoCEdAcXhwTM7lrHV9lChoBkdAi03LQw9JSWgHTegDaAhHQHGd8VDa4+d1fZQoaAZHQIlIKySmqHZoB03oA2gIR0Bx3Gjk+5e7dX2UKGgGR0CGjShDgIhRaAdN6ANoCEdAceETSLIgeXV9lChoBkdAiiwK+8Gs3mgHTegDaAhHQHHieWv8qF11fZQoaAZHQIoQeMXJo01oB03oA2gIR0ByGfjMmnfmdX2UKGgGR0CAoAe+VTrFaAdN6ANoCEdAcmEZUkv9L3V9lChoBkdAiYTvQF9roGgHTegDaAhHQHJkSNXHR1J1fZQoaAZHQIsfSpaRp11oB03oA2gIR0ByZST7l7tzdX2UKGgGR0CE4JlBhQWOaAdN6ANoCEdAcooaq0dBB3V9lChoBkdAiNNm7z06HWgHTegDaAhHQHLH761stTV1fZQoaAZHQIs0ve+Eh7poB03oA2gIR0Byy2ecx0uEdX2UKGgGR0CG/441gpjMaAdN6ANoCEdAcsxd8Aq/d3V9lChoBkdAghPCwjdHlWgHTegDaAhHQHMCt3B55Z91fZQoaAZHQHljrf51vEVoB03oA2gIR0BzTsID5j6OdX2UKGgGR0CGyy6S1Vo6aAdN6ANoCEdAc1H3Mpw0f3V9lChoBkdAhv5Tr/sE7mgHTegDaAhHQHNS+HFglWx1fZQoaAZHQIcAlygf2bpoB03oA2gIR0BzeZzXBguzdX2UKGgGR0CHCn8Ti83/aAdN6ANoCEdAc7qQrc0tRXV9lChoBkdAiaGEoF3Y+WgHTegDaAhHQHO9qtga3ql1fZQoaAZHQIWGcAmzByloB03oA2gIR0BzvpDBuXNUdX2UKGgGR0CJj8fq5byIaAdN6ANoCEdAc/PuyeI2wXV9lChoBkdAg/XRkmQbM2gHTegDaAhHQHRAMdkrf+F1fZQoaAZHQIhZaDGtITZoB03oA2gIR0B0Q4lgMMJAdX2UKGgGR0CInQyzHCGfaAdN6ANoCEdAdESAAQxvenV9lChoBkdAiMepOFg2ImgHTegDaAhHQHRqi+L3sX11fZQoaAZHQIjCbVe8f3hoB03oA2gIR0B0qV+vyLAIdX2UKGgGR0CIj7OpKjBVaAdN6ANoCEdAdKxyFPBSDXV9lChoBkdAhwuiO/+Kj2gHTegDaAhHQHStfthNM491fZQoaAZHQId4L3h4t6JoB03oA2gIR0B03rWMCLdfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5347, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa466b968b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa466b96940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa466b969d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa466b96a60>", "_build": "<function ActorCriticPolicy._build at 0x7fa466b96af0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa466b96b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa466b96c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa466b96ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa466b96d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa466b96dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa466b96e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa466b96ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa466bacb40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679918498233410769, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEh0dD9fOms/fs8gv4b7J78pF0w/nzSHv+MvGD8+y4C9RQu3P1oBvr9HQYi/gG70vboYqj9nO7G/cEwJv/9ybMAeit8/X8gTwO6LOL54ZOa/2O8dv5GKEj/rDJy+8GAZwDLCVL+ORc+/xUmMPig5wL9vVOk+za2ePp69oz5SQ5c/7DXGvv3iuT9hMjc/N13avvAbfr9mH7G+PEUMv7lz7b/sop++vlfIP3Vvqr+eQFg+ffYYvyaBFb2SSQQ/GUU3vwRoO78wQ/q+SLmbvrZHiz4ywlS/jhceP8VJjD7rdyo/XJVdvho7G76BYjM/QYVOv8NW8z7bvlLA1ER2vXgyiz85aXs/m125P0OLnz0z+rg/ojVBv6nv/7+dn6q9khIiQIMLgj8rcqM/+WTqvs6B7b+KTsC91iruP4xnib9sIby/MsJUv45Fz7/FSYw+KDnAv0QVjr2GCGa/91RmP9AcxT4KPhQ/ExVuP+IDkj4mVbO+QwrDPYaLWb/EvRQ/+R0GvyV+sb+O1kQ/HSNIv6DqC7/8WEe/0IaCP5IPCj/IfJI8HM7KPpXk874eMJc+es0PPjLCVL+OFx4/xUmMPut3Kj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADMByM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEHyXvQAAAADdufK/AAAAACLSkr0AAAAAJi3oPwAAAAAsVRQ9AAAAAApX/D8AAAAAufOEvQAAAAAQRu2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhGt8NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMHS6L0AAAAA7O7vvwAAAAAV9Lq9AAAAADrMAEAAAAAABu6MOwAAAACk9/Y/AAAAABkzubsAAAAAAkT7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALFpbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBsmPE7AAAAAOgi/78AAAAAxBRJvQAAAABfwfQ/AAAAAHidh70AAAAA8rPqPwAAAADwVrI9AAAAAMMw378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTr4Y0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANGIjvQAAAADlCQHAAAAAAAlPBL4AAAAAxpLmPwAAAABfNR87AAAAAD6K3T8AAAAAMm7BvQAAAAB9Gt+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJk7zCfpUxWMAWyUTegDjAF0lEdArImK4J/oaHV9lChoBkdAmXMtm16VuGgHTegDaAhHQKyLZBHCoCN1fZQoaAZHQJMqpikO7QNoB03oA2gIR0Cskq7LlmvodX2UKGgGR0CVa/dOIqLCaAdN6ANoCEdArJTb59E1EXV9lChoBkdAlPCDbvgFYGgHTegDaAhHQKyXM38XN1R1fZQoaAZHQIxXqX6ZYxNoB03oA2gIR0CsmgdLQHAzdX2UKGgGR0CBjp/o7muDaAdN6ANoCEdArKMlPtUn5XV9lChoBkdAhmM9NnGsFWgHTegDaAhHQKylPIKc/dJ1fZQoaAZHQIDZCWNWEK5oB03oA2gIR0Cspsyy+pOvdX2UKGgGR0CTBFb+cYqHaAdN6ANoCEdArKi3Uaya/nV9lChoBkdAmPvsO9WZJGgHTegDaAhHQKyv49CeEqV1fZQoaAZHQJYBlMURFqloB03oA2gIR0CssfrbHp8ndX2UKGgGR0CSo0sBhhH9aAdN6ANoCEdArLN8unMt9XV9lChoBkdAmWMv3ai9I2gHTegDaAhHQKy2ZUG3WnV1fZQoaAZHQKB/ptu1ndxoB03oA2gIR0CswJZ4wAU+dX2UKGgGR0CgrGHIp6QeaAdN6ANoCEdArMLLabnX/nV9lChoBkdAoJO01fmcOWgHTegDaAhHQKzEWn752yN1fZQoaAZHQKCMH1klNURoB03oA2gIR0Csxkjmjj7zdX2UKGgGR0CgRMo24uscaAdN6ANoCEdArM1WCVbA13V9lChoBkdAoFjQ7ihnJ2gHTegDaAhHQKzPexJNCZ51fZQoaAZHQKAo18IAwPBoB03oA2gIR0Cs0Qm96C17dX2UKGgGR0Cdxzlj3EhraAdN6ANoCEdArNMg6IWP93V9lChoBkdAm+Dtv863iWgHTegDaAhHQKzd+OWBz3h1fZQoaAZHQJpF0F6iTMdoB03oA2gIR0Cs4BfD1oQGdX2UKGgGR0CaeCQ6p5u7aAdN6ANoCEdArOG0pAlfJHV9lChoBkdAmyW+uzQeFWgHTegDaAhHQKzjtMNc4YJ1fZQoaAZHQJgz3kYGdI5oB03oA2gIR0Cs6qqGtZFHdX2UKGgGR0CWr+hm5DqoaAdN6ANoCEdArOzPIdU83nV9lChoBkdAlwh71ZkkKWgHTegDaAhHQKzuUSidrft1fZQoaAZHQJaq5jJ+2E1oB03oA2gIR0Cs8CeFL39KdX2UKGgGR0CeH9GUOd5IaAdN6ANoCEdArPqtC3PRiXV9lChoBkdAnMBD9wWFe2gHTegDaAhHQKz9ia3I+4d1fZQoaAZHQJr6I1m8M/hoB03oA2gIR0Cs/wtFa0QcdX2UKGgGR0CfCljawljWaAdN6ANoCEdArQDp//echHV9lChoBkdAnOkXJ5mh/WgHTegDaAhHQK0IBiONo8J1fZQoaAZHQJ7ALMcIZ65oB03oA2gIR0CtCidQXQ+mdX2UKGgGR0Cde3cs189faAdN6ANoCEdArQuvc8DB/XV9lChoBkdAnn9naN+9amgHTegDaAhHQK0NkskIHC51fZQoaAZHQJ27E2/BWPtoB03oA2gIR0CtF0y5I6KcdX2UKGgGR0CfHyHcUM5PaAdN6ANoCEdArRrAyXUpeHV9lChoBkdAn4NdKRMewWgHTegDaAhHQK0cn7sv7Fd1fZQoaAZHQJ+0Lfm9xqBoB03oA2gIR0CtHn8Oby6MdX2UKGgGR0Cdh7uIhyKfaAdN6ANoCEdArSWEzXSSeXV9lChoBkdAnqknJtBOYmgHTegDaAhHQK0nlBOYYzl1fZQoaAZHQJ2rtdv863loB03oA2gIR0CtKR/z8P4EdX2UKGgGR0CcE+80DU3GaAdN6ANoCEdArSsB6MR6GHV9lChoBkdAoNlJu/Dcd2gHTegDaAhHQK0zmTAWSEF1fZQoaAZHQKCXDtNSIgxoB03oA2gIR0CtNwItcv/SdX2UKGgGR0CgfHjc/MW5aAdN6ANoCEdArTl2LR8c/HV9lChoBkdAoOFp5mh/RWgHTegDaAhHQK0741IAfdR1fZQoaAZHQJotoduHerNoB03oA2gIR0CtQs2UbDMvdX2UKGgGR0CeIJ8aXKKYaAdN6ANoCEdArUTtXko4MnV9lChoBkdAn9/NZid8RmgHTegDaAhHQK1GiZWJaaF1fZQoaAZHQJibGN0eU6hoB03oA2gIR0CtSHB19v0idX2UKGgGR0CeypK9PDYRaAdN6ANoCEdArU/zPjXFtXV9lChoBkdAnNpyFCb+cmgHTegDaAhHQK1TOZ2pyZN1fZQoaAZHQJxxNAUtZmtoB03oA2gIR0CtVb238XN1dX2UKGgGR0CZV919fCyhaAdN6ANoCEdArVjHbAUL2HV9lChoBkdAl/aQqVhTfmgHTegDaAhHQK1gReRgZ0l1fZQoaAZHQJWNYxFiKBNoB03oA2gIR0CtYmdELH+7dX2UKGgGR0CVMzkq+ajOaAdN6ANoCEdArWPy2v0ROHV9lChoBkdAll9NOEdvKmgHTegDaAhHQK1lwvGIbfh1fZQoaAZHQJwzq0Y0l7doB03oA2gIR0CtbKxNZeRgdX2UKGgGR0CcaihKlHjIaAdN6ANoCEdArW9ZiRW913V9lChoBkdAnDhf6GgzxmgHTegDaAhHQK1xqvwmVqx1fZQoaAZHQJvdTFKkEcNoB03oA2gIR0CtdKuDaoMsdX2UKGgGR0CcPr8neBQOaAdN6ANoCEdArX2Poouwo3V9lChoBkdAmiicwYcebWgHTegDaAhHQK1/r9If8uV1fZQoaAZHQJxk6LBKtgdoB03oA2gIR0CtgS+ruIAPdX2UKGgGR0CbmOpAD7qIaAdN6ANoCEdArYMIgq3EynV9lChoBkdAmfj10PpY92gHTegDaAhHQK2KEzw+dLB1fZQoaAZHQJuXipsGgSRoB03oA2gIR0CtjD3Ux20RdX2UKGgGR0CaXhzfaYeDaAdN6ANoCEdArY4euLaVU3V9lChoBkdAmEnBcAzYVmgHTegDaAhHQK2Q9+aScLB1fZQoaAZHQJj+lG2CulpoB03oA2gIR0CtmwTPSlWPdX2UKGgGR0CawgnVG0/oaAdN6ANoCEdArZ0gaYNRWXV9lChoBkdAmzJCXUpd8mgHTegDaAhHQK2em6YE4ed1fZQoaAZHQJzKy/ag261oB03oA2gIR0CtoG4e1a4ddX2UKGgGR0Cdy7VjqfOEaAdN6ANoCEdAraeBCIDYAnV9lChoBkdAm+jY73fygGgHTegDaAhHQK2pt5oGpuN1fZQoaAZHQJ8KPiJfplloB03oA2gIR0Ctq0G7rcCYdX2UKGgGR0Cezfc4HX2/aAdN6ANoCEdAra2WtKZlWnV9lChoBkdAniFDPfKp1mgHTegDaAhHQK24VfpD/l11fZQoaAZHQJ/fJ2vB7/poB03oA2gIR0CtumjtG/etdX2UKGgGR0CfrumCROk+aAdN6ANoCEdArbvvgYP5HnV9lChoBkdAnGK0fgaWHGgHTegDaAhHQK29wrHU+cJ1fZQoaAZHQJnUSdoWYWtoB03oA2gIR0CtxOby6MBIdX2UKGgGR0CV+P25xzaLaAdN6ANoCEdArccGHSF493V9lChoBkdAlnC8asIVumgHTegDaAhHQK3Ilttygf51fZQoaAZHQJKKPyAhB7hoB03oA2gIR0CtynvZRKpUdX2UKGgGR0CWWBCGN70GaAdN6ANoCEdArdVBnpSrHXV9lChoBkdAmYvwzguRLmgHTegDaAhHQK3X6/336AR1fZQoaAZHQJmxhY2bXpZoB03oA2gIR0Ct2W4Xwb2ldX2UKGgGR0Ca8k82aUiZaAdN6ANoCEdArdtHEQ5FPXV9lChoBkdAmzdq+vhZQ2gHTegDaAhHQK3ib1anrIJ1fZQoaAZHQJap5hw2l2xoB03oA2gIR0Ct5IdVFQVLdX2UKGgGR0CZVEwb2lEaaAdN6ANoCEdAreYSoMrmQ3V9lChoBkdAnR1ZBgNPQGgHTegDaAhHQK3n95Ec81Z1fZQoaAZHQJxhxlI3BHloB03oA2gIR0Ct8ZBbnoxIdX2UKGgGR0CeJXAv+OwQaAdN6ANoCEdArfT/sAvL5nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1738.2316334544448, "std_reward": 118.97481258424438, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-27T13:06:23.737318"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2136
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24dff055963e12fa85217f22925d603f7e55cfbd63806d00a9668ef18585a149
|
3 |
size 2136
|