emmuzoo commited on
Commit
0cb1e18
1 Parent(s): 4aebd6a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 742.42 +/- 103.87
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b5a0f733a8c90ce73ec660a23699673e82d0e9b8b7f21352b32480e239abaed
3
+ size 129252
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6aecebe280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6aecebe310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6aecebe3a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6aecebe430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6aecebe4c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6aecebe550>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6aecebe5e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6aecebe670>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6aecebe700>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6aecebe790>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6aecebe820>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6aecebe8b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f6aecebf7c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 171128,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679912482774828108,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJKFbT9ItYw/UIfFPCbdH7+/tw6/CJ5JPiStU7/+6Mm+oHovv1WTlD7khDA+xthGvjxqLD/dZJa9DZ1xPp3qj73tTIe/hRAHvXTzaL61XEa+lvOjP8JUUD8t0AJAeaXsvaYOgj6oMX8+OrQUwPdV2z5owWq9sDpCv6JhOj4klk68KVkjP5A94z0SxmG+4XOEPXVlor4Rl7694BTIvkJttz2pEti7kF2/PV7Pbz49NZw9vG8DP+Uworz1L1K+ZLaCPggZ4T9ftwu+5i77u/59l7qmDoI+qDF/PnBb3D73Vds+MD2RO5Pm8b5Ksr4++RGlvudmvb5bDeK9nsTgu/qNAL7LWjc+X+kBwJVpI7+NX14/7VUGP1KGHz7DH24+wpFnPSIhFz9ksU5A0E63Pkc7DjzaJN8/qgxdPwqVsz04Hoy+WvN7wKgxfz46tBTA91XbPjBKQz8X02W/VWp1PfnJD0GyQ+bA/9tkv6Lz2D1v7Oy8AD/3PtvWn0BcsAc+FL1CP3sQiL9svAhANzWGvuWIaT9yXtq/V5U7P+kFo73UxwdAHgSeP8IaYkB33DG/qzbnPqYOgj5+Z4DAcFvcPoBlFcCUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAVWs01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJD5CPQAAAACHmvu/AAAAAKdVijwAAAAAp0n7PwAAAACEJ5w8AAAAAGKl7T8AAAAAdzydvQAAAADqB+2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv4j8NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOO4dT0AAAAAbgL7vwAAAADx/Jy9AAAAAI6z+j8AAAAAl5jBPQAAAADGNes/AAAAAL0YAr4AAAAAmVvyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJEnj7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC/neu8AAAAABfK578AAAAA5qfXvQAAAAB45fo/AAAAAG7TPjsAAAAAHgrePwAAAACAquA9AAAAAFLG8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqS9E1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAheH6PQAAAADb4e+/AAAAAClWYz0AAAAAAtbZPwAAAADW+/g9AAAAADEi+z8AAAAAorkuvAAAAACjjPS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.914448,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIAwJZr56+qMAWyUTegDjAF0lEdAZgNuNxVAA3V9lChoBkdAaY6Z3LV4HGgHTacBaAhHQGYF6YE4ecR1fZQoaAZHQBUPbO/tY0VoB0sUaAhHQGYHiNbTtsx1fZQoaAZHQBjDBVMmF8JoB0sUaAhHQGYJ75mAbyZ1fZQoaAZHQBf+7pV0cOtoB0sVaAhHQGYLr5RCQcR1fZQoaAZHQBOPl2eQMhJoB0sUaAhHQGYPkUsWfsh1fZQoaAZHQIEVfmNipehoB03oA2gIR0BmaHldTo+wdX2UKGgGR0CHc9EIgNgCaAdN6ANoCEdAZoPVsk6cRXV9lChoBkdAgddH8TBZZGgHTRADaAhHQGbKGkep4r11fZQoaAZHQIdjvlQuVX5oB03oA2gIR0BnFV/8VHnVdX2UKGgGR0CIWCkX1rZbaAdN6ANoCEdAZ2+vW6K+BnV9lChoBkdAhkVyLAHmimgHTegDaAhHQGeDcriEQGx1fZQoaAZHQIbOMmKIi1RoB03oA2gIR0Bns7GR3eN2dX2UKGgGR0CIeUi35N48aAdN6ANoCEdAZ+aZYxL0z3V9lChoBkdAc73xs2vSt2gHTboBaAhHQGgQgXMyJsR1fZQoaAZHQIa4mKAJ9iNoB03oA2gIR0BoQneenQ6ZdX2UKGgGR0CEKK5+6RQraAdN6ANoCEdAaFpjpcHGCXV9lChoBkdAbh8XIEKVp2gHTUgBaAhHQGiiRW912aF1fZQoaAZHQB/onF5v9+BoB0sUaAhHQGio0iQkond1fZQoaAZHQCExRKpT/AFoB0sWaAhHQGivzDn/1g91fZQoaAZHQIMCPCbc45toB03oA2gIR0Bo73jGT9sKdX2UKGgGR0CGglVwPy08aAdN6ANoCEdAaRveYUnG83V9lChoBkdAgN9J2+wkgWgHTQEDaAhHQGkw4SpR4yJ1fZQoaAZHQFb/bVBlcyFoB0u5aAhHQGlXY7q6e5F1fZQoaAZHQIWfOUliSaFoB03oA2gIR0BpmSgwoLG8dX2UKGgGR0Adu5/b0voNaAdLGGgIR0BpnlzbN8mbdX2UKGgGR0BxeDbwjMV2aAdNwQFoCEdAabSyKNyYHHV9lChoBkdAfhnDej2zwGgHTegDaAhHQGnC5bQkX1t1fZQoaAZHQIglG3z+WGBoB03oA2gIR0Bp7JfnfVI7dX2UKGgGR0B/GqzPa+N+aAdNCANoCEdAano0CzTnaHV9lChoBkdAHC4Vh1DBuWgHSxRoCEdAaoBHMlkYoHV9lChoBkdAguG3VTaTOmgHTegDaAhHQGqKJf6XSjR1fZQoaAZHQIcdO76Hj6xoB03oA2gIR0Bqq8LYwqRVdX2UKGgGR0CDMBb9qDbraAdN6ANoCEdAavTsZ5zHTHV9lChoBkdAhhihmGucMGgHTegDaAhHQGtyLwF1SwZ1fZQoaAZHQIRBMYyfthNoB03oA2gIR0BreEEX+ERKdX2UKGgGR0CFFRJPqLTAaAdN6ANoCEdAa45m1YyO73V9lChoBkdAguSTfaYeDGgHTegDaAhHQGvD7gjyFwl1fZQoaAZHQGvws3IdU85oB01xAWgIR0Br2YFgUlAvdX2UKGgGR0BwKnH7xd6caAdNxgFoCEdAbEZDpC8e0XV9lChoBkdAh+MtvOyE+WgHTegDaAhHQGxSPxH5Jsh1fZQoaAZHQIeXc9IPK+1oB03oA2gIR0BsWtyLhrFgdX2UKGgGR0A5JPeHi3ocaAdLUGgIR0BsXbwc5sCUdX2UKGgGR0CCbhylvZRLaAdN6ANoCEdAbM9S3LFGX3V9lChoBkdAhMv82Jiy6mgHTegDaAhHQG1QgtOEdvN1fZQoaAZHQIJ5NB2OhkBoB03oA2gIR0BtVyHKwIMSdX2UKGgGR0CEYEwpvxYraAdN6ANoCEdAbVkQPI4lyHV9lChoBkdAhtY1loUSI2gHTegDaAhHQG2lAeq7yx11fZQoaAZHQIaxVMCcPOJoB03oA2gIR0BuMeiYb83udX2UKGgGR0CDvZALy+YdaAdN6ANoCEdAbjsUA1ejVXV9lChoBkdAg2VF4LThHmgHTegDaAhHQG49s4T9KmN1fZQoaAZHQH0zquOjqOdoB03oA2gIR0Busegam4y5dX2UKGgGR0CG+6imEXchaAdN6ANoCEdAby5lV94NZ3V9lChoBkdAhJkdroGIK2gHTegDaAhHQG80nWSU1Q91fZQoaAZHQIWu56Y3Ns5oB03oA2gIR0BvNm/5+H8CdX2UKGgGR0CHk74Fiay9aAdN6ANoCEdAb4JZ1V5rxnV9lChoBkdAhUcUyYXwb2gHTegDaAhHQHAHdbcGkep1fZQoaAZHQH8E6PsAvL5oB03oA2gIR0BwC/jwQUYbdX2UKGgGR0CA/zklu3tsaAdN6ANoCEdAcA1Nr0rbxnV9lChoBkdAgf4fMOf/WGgHTegDaAhHQHBGswpON5t1fZQoaAZHQIUTo7T2FnJoB03oA2gIR0BwhsvoNd7fdX2UKGgGR0CDMjHEuQIVaAdN6ANoCEdAcIn2Q4jrzHV9lChoBkdAgTDpDmbLEGgHTegDaAhHQHCK4YaYNRZ1fZQoaAZHQIV2870WdmRoB03oA2gIR0BwsCt1ZDArdX2UKGgGR0CGWx8PWhAXaAdN6ANoCEdAcPHaPS2H+XV9lChoBkdAhUO9vjwQUmgHTegDaAhHQHD2jEBKcut1fZQoaAZHQIXRCUA1ejVoB03oA2gIR0Bw9+knCwbEdX2UKGgGR0CBic7JW/8EaAdN6ANoCEdAcTDj9n9NvnV9lChoBkdAg0PZa/yoXWgHTegDaAhHQHF0c5n13+x1fZQoaAZHQIjGpNATqSpoB03oA2gIR0Bxd4MrmQr+dX2UKGgGR0CIGoHObAk+aAdN6ANoCEdAcXhwTM7lrHV9lChoBkdAi03LQw9JSWgHTegDaAhHQHGd8VDa4+d1fZQoaAZHQIlIKySmqHZoB03oA2gIR0Bx3Gjk+5e7dX2UKGgGR0CGjShDgIhRaAdN6ANoCEdAceETSLIgeXV9lChoBkdAiiwK+8Gs3mgHTegDaAhHQHHieWv8qF11fZQoaAZHQIoQeMXJo01oB03oA2gIR0ByGfjMmnfmdX2UKGgGR0CAoAe+VTrFaAdN6ANoCEdAcmEZUkv9L3V9lChoBkdAiYTvQF9roGgHTegDaAhHQHJkSNXHR1J1fZQoaAZHQIsfSpaRp11oB03oA2gIR0ByZST7l7tzdX2UKGgGR0CE4JlBhQWOaAdN6ANoCEdAcooaq0dBB3V9lChoBkdAiNNm7z06HWgHTegDaAhHQHLH761stTV1fZQoaAZHQIs0ve+Eh7poB03oA2gIR0Byy2ecx0uEdX2UKGgGR0CG/441gpjMaAdN6ANoCEdAcsxd8Aq/d3V9lChoBkdAghPCwjdHlWgHTegDaAhHQHMCt3B55Z91fZQoaAZHQHljrf51vEVoB03oA2gIR0BzTsID5j6OdX2UKGgGR0CGyy6S1Vo6aAdN6ANoCEdAc1H3Mpw0f3V9lChoBkdAhv5Tr/sE7mgHTegDaAhHQHNS+HFglWx1fZQoaAZHQIcAlygf2bpoB03oA2gIR0BzeZzXBguzdX2UKGgGR0CHCn8Ti83/aAdN6ANoCEdAc7qQrc0tRXV9lChoBkdAiaGEoF3Y+WgHTegDaAhHQHO9qtga3ql1fZQoaAZHQIWGcAmzByloB03oA2gIR0BzvpDBuXNUdX2UKGgGR0CJj8fq5byIaAdN6ANoCEdAc/PuyeI2wXV9lChoBkdAg/XRkmQbM2gHTegDaAhHQHRAMdkrf+F1fZQoaAZHQIhZaDGtITZoB03oA2gIR0B0Q4lgMMJAdX2UKGgGR0CInQyzHCGfaAdN6ANoCEdAdESAAQxvenV9lChoBkdAiMepOFg2ImgHTegDaAhHQHRqi+L3sX11fZQoaAZHQIjCbVe8f3hoB03oA2gIR0B0qV+vyLAIdX2UKGgGR0CIj7OpKjBVaAdN6ANoCEdAdKxyFPBSDXV9lChoBkdAhwuiO/+Kj2gHTegDaAhHQHStfthNM491fZQoaAZHQId4L3h4t6JoB03oA2gIR0B03rWMCLdfdWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 5347,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5df29027421eacf216b33431bf935f8408ffdc2ba0f5409d4dbfea90be1199a
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7df586c2a1dd446ecb1bb5b91fb8e09ac527541363870a3ec3d3121e002971b
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6aecebe280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6aecebe310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6aecebe3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6aecebe430>", "_build": "<function ActorCriticPolicy._build at 0x7f6aecebe4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6aecebe550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6aecebe5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6aecebe670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6aecebe700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6aecebe790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6aecebe820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6aecebe8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6aecebf7c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 171128, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679912482774828108, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJKFbT9ItYw/UIfFPCbdH7+/tw6/CJ5JPiStU7/+6Mm+oHovv1WTlD7khDA+xthGvjxqLD/dZJa9DZ1xPp3qj73tTIe/hRAHvXTzaL61XEa+lvOjP8JUUD8t0AJAeaXsvaYOgj6oMX8+OrQUwPdV2z5owWq9sDpCv6JhOj4klk68KVkjP5A94z0SxmG+4XOEPXVlor4Rl7694BTIvkJttz2pEti7kF2/PV7Pbz49NZw9vG8DP+Uworz1L1K+ZLaCPggZ4T9ftwu+5i77u/59l7qmDoI+qDF/PnBb3D73Vds+MD2RO5Pm8b5Ksr4++RGlvudmvb5bDeK9nsTgu/qNAL7LWjc+X+kBwJVpI7+NX14/7VUGP1KGHz7DH24+wpFnPSIhFz9ksU5A0E63Pkc7DjzaJN8/qgxdPwqVsz04Hoy+WvN7wKgxfz46tBTA91XbPjBKQz8X02W/VWp1PfnJD0GyQ+bA/9tkv6Lz2D1v7Oy8AD/3PtvWn0BcsAc+FL1CP3sQiL9svAhANzWGvuWIaT9yXtq/V5U7P+kFo73UxwdAHgSeP8IaYkB33DG/qzbnPqYOgj5+Z4DAcFvcPoBlFcCUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAVWs01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJD5CPQAAAACHmvu/AAAAAKdVijwAAAAAp0n7PwAAAACEJ5w8AAAAAGKl7T8AAAAAdzydvQAAAADqB+2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv4j8NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOO4dT0AAAAAbgL7vwAAAADx/Jy9AAAAAI6z+j8AAAAAl5jBPQAAAADGNes/AAAAAL0YAr4AAAAAmVvyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJEnj7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC/neu8AAAAABfK578AAAAA5qfXvQAAAAB45fo/AAAAAG7TPjsAAAAAHgrePwAAAACAquA9AAAAAFLG8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqS9E1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAheH6PQAAAADb4e+/AAAAAClWYz0AAAAAAtbZPwAAAADW+/g9AAAAADEi+z8AAAAAorkuvAAAAACjjPS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.914448, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIAwJZr56+qMAWyUTegDjAF0lEdAZgNuNxVAA3V9lChoBkdAaY6Z3LV4HGgHTacBaAhHQGYF6YE4ecR1fZQoaAZHQBUPbO/tY0VoB0sUaAhHQGYHiNbTtsx1fZQoaAZHQBjDBVMmF8JoB0sUaAhHQGYJ75mAbyZ1fZQoaAZHQBf+7pV0cOtoB0sVaAhHQGYLr5RCQcR1fZQoaAZHQBOPl2eQMhJoB0sUaAhHQGYPkUsWfsh1fZQoaAZHQIEVfmNipehoB03oA2gIR0BmaHldTo+wdX2UKGgGR0CHc9EIgNgCaAdN6ANoCEdAZoPVsk6cRXV9lChoBkdAgddH8TBZZGgHTRADaAhHQGbKGkep4r11fZQoaAZHQIdjvlQuVX5oB03oA2gIR0BnFV/8VHnVdX2UKGgGR0CIWCkX1rZbaAdN6ANoCEdAZ2+vW6K+BnV9lChoBkdAhkVyLAHmimgHTegDaAhHQGeDcriEQGx1fZQoaAZHQIbOMmKIi1RoB03oA2gIR0Bns7GR3eN2dX2UKGgGR0CIeUi35N48aAdN6ANoCEdAZ+aZYxL0z3V9lChoBkdAc73xs2vSt2gHTboBaAhHQGgQgXMyJsR1fZQoaAZHQIa4mKAJ9iNoB03oA2gIR0BoQneenQ6ZdX2UKGgGR0CEKK5+6RQraAdN6ANoCEdAaFpjpcHGCXV9lChoBkdAbh8XIEKVp2gHTUgBaAhHQGiiRW912aF1fZQoaAZHQB/onF5v9+BoB0sUaAhHQGio0iQkond1fZQoaAZHQCExRKpT/AFoB0sWaAhHQGivzDn/1g91fZQoaAZHQIMCPCbc45toB03oA2gIR0Bo73jGT9sKdX2UKGgGR0CGglVwPy08aAdN6ANoCEdAaRveYUnG83V9lChoBkdAgN9J2+wkgWgHTQEDaAhHQGkw4SpR4yJ1fZQoaAZHQFb/bVBlcyFoB0u5aAhHQGlXY7q6e5F1fZQoaAZHQIWfOUliSaFoB03oA2gIR0BpmSgwoLG8dX2UKGgGR0Adu5/b0voNaAdLGGgIR0BpnlzbN8mbdX2UKGgGR0BxeDbwjMV2aAdNwQFoCEdAabSyKNyYHHV9lChoBkdAfhnDej2zwGgHTegDaAhHQGnC5bQkX1t1fZQoaAZHQIglG3z+WGBoB03oA2gIR0Bp7JfnfVI7dX2UKGgGR0B/GqzPa+N+aAdNCANoCEdAano0CzTnaHV9lChoBkdAHC4Vh1DBuWgHSxRoCEdAaoBHMlkYoHV9lChoBkdAguG3VTaTOmgHTegDaAhHQGqKJf6XSjR1fZQoaAZHQIcdO76Hj6xoB03oA2gIR0Bqq8LYwqRVdX2UKGgGR0CDMBb9qDbraAdN6ANoCEdAavTsZ5zHTHV9lChoBkdAhhihmGucMGgHTegDaAhHQGtyLwF1SwZ1fZQoaAZHQIRBMYyfthNoB03oA2gIR0BreEEX+ERKdX2UKGgGR0CFFRJPqLTAaAdN6ANoCEdAa45m1YyO73V9lChoBkdAguSTfaYeDGgHTegDaAhHQGvD7gjyFwl1fZQoaAZHQGvws3IdU85oB01xAWgIR0Br2YFgUlAvdX2UKGgGR0BwKnH7xd6caAdNxgFoCEdAbEZDpC8e0XV9lChoBkdAh+MtvOyE+WgHTegDaAhHQGxSPxH5Jsh1fZQoaAZHQIeXc9IPK+1oB03oA2gIR0BsWtyLhrFgdX2UKGgGR0A5JPeHi3ocaAdLUGgIR0BsXbwc5sCUdX2UKGgGR0CCbhylvZRLaAdN6ANoCEdAbM9S3LFGX3V9lChoBkdAhMv82Jiy6mgHTegDaAhHQG1QgtOEdvN1fZQoaAZHQIJ5NB2OhkBoB03oA2gIR0BtVyHKwIMSdX2UKGgGR0CEYEwpvxYraAdN6ANoCEdAbVkQPI4lyHV9lChoBkdAhtY1loUSI2gHTegDaAhHQG2lAeq7yx11fZQoaAZHQIaxVMCcPOJoB03oA2gIR0BuMeiYb83udX2UKGgGR0CDvZALy+YdaAdN6ANoCEdAbjsUA1ejVXV9lChoBkdAg2VF4LThHmgHTegDaAhHQG49s4T9KmN1fZQoaAZHQH0zquOjqOdoB03oA2gIR0Busegam4y5dX2UKGgGR0CG+6imEXchaAdN6ANoCEdAby5lV94NZ3V9lChoBkdAhJkdroGIK2gHTegDaAhHQG80nWSU1Q91fZQoaAZHQIWu56Y3Ns5oB03oA2gIR0BvNm/5+H8CdX2UKGgGR0CHk74Fiay9aAdN6ANoCEdAb4JZ1V5rxnV9lChoBkdAhUcUyYXwb2gHTegDaAhHQHAHdbcGkep1fZQoaAZHQH8E6PsAvL5oB03oA2gIR0BwC/jwQUYbdX2UKGgGR0CA/zklu3tsaAdN6ANoCEdAcA1Nr0rbxnV9lChoBkdAgf4fMOf/WGgHTegDaAhHQHBGswpON5t1fZQoaAZHQIUTo7T2FnJoB03oA2gIR0BwhsvoNd7fdX2UKGgGR0CDMjHEuQIVaAdN6ANoCEdAcIn2Q4jrzHV9lChoBkdAgTDpDmbLEGgHTegDaAhHQHCK4YaYNRZ1fZQoaAZHQIV2870WdmRoB03oA2gIR0BwsCt1ZDArdX2UKGgGR0CGWx8PWhAXaAdN6ANoCEdAcPHaPS2H+XV9lChoBkdAhUO9vjwQUmgHTegDaAhHQHD2jEBKcut1fZQoaAZHQIXRCUA1ejVoB03oA2gIR0Bw9+knCwbEdX2UKGgGR0CBic7JW/8EaAdN6ANoCEdAcTDj9n9NvnV9lChoBkdAg0PZa/yoXWgHTegDaAhHQHF0c5n13+x1fZQoaAZHQIjGpNATqSpoB03oA2gIR0Bxd4MrmQr+dX2UKGgGR0CIGoHObAk+aAdN6ANoCEdAcXhwTM7lrHV9lChoBkdAi03LQw9JSWgHTegDaAhHQHGd8VDa4+d1fZQoaAZHQIlIKySmqHZoB03oA2gIR0Bx3Gjk+5e7dX2UKGgGR0CGjShDgIhRaAdN6ANoCEdAceETSLIgeXV9lChoBkdAiiwK+8Gs3mgHTegDaAhHQHHieWv8qF11fZQoaAZHQIoQeMXJo01oB03oA2gIR0ByGfjMmnfmdX2UKGgGR0CAoAe+VTrFaAdN6ANoCEdAcmEZUkv9L3V9lChoBkdAiYTvQF9roGgHTegDaAhHQHJkSNXHR1J1fZQoaAZHQIsfSpaRp11oB03oA2gIR0ByZST7l7tzdX2UKGgGR0CE4JlBhQWOaAdN6ANoCEdAcooaq0dBB3V9lChoBkdAiNNm7z06HWgHTegDaAhHQHLH761stTV1fZQoaAZHQIs0ve+Eh7poB03oA2gIR0Byy2ecx0uEdX2UKGgGR0CG/441gpjMaAdN6ANoCEdAcsxd8Aq/d3V9lChoBkdAghPCwjdHlWgHTegDaAhHQHMCt3B55Z91fZQoaAZHQHljrf51vEVoB03oA2gIR0BzTsID5j6OdX2UKGgGR0CGyy6S1Vo6aAdN6ANoCEdAc1H3Mpw0f3V9lChoBkdAhv5Tr/sE7mgHTegDaAhHQHNS+HFglWx1fZQoaAZHQIcAlygf2bpoB03oA2gIR0BzeZzXBguzdX2UKGgGR0CHCn8Ti83/aAdN6ANoCEdAc7qQrc0tRXV9lChoBkdAiaGEoF3Y+WgHTegDaAhHQHO9qtga3ql1fZQoaAZHQIWGcAmzByloB03oA2gIR0BzvpDBuXNUdX2UKGgGR0CJj8fq5byIaAdN6ANoCEdAc/PuyeI2wXV9lChoBkdAg/XRkmQbM2gHTegDaAhHQHRAMdkrf+F1fZQoaAZHQIhZaDGtITZoB03oA2gIR0B0Q4lgMMJAdX2UKGgGR0CInQyzHCGfaAdN6ANoCEdAdESAAQxvenV9lChoBkdAiMepOFg2ImgHTegDaAhHQHRqi+L3sX11fZQoaAZHQIjCbVe8f3hoB03oA2gIR0B0qV+vyLAIdX2UKGgGR0CIj7OpKjBVaAdN6ANoCEdAdKxyFPBSDXV9lChoBkdAhwuiO/+Kj2gHTegDaAhHQHStfthNM491fZQoaAZHQId4L3h4t6JoB03oA2gIR0B03rWMCLdfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5347, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (257 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 742.4218219228089, "std_reward": 103.87301025979, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-27T10:28:23.454982"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4780f0b3f846090d3b8e3bab5af3a1fa4166337598bce31386adc4630b644cb0
3
+ size 2136