File size: 14,277 Bytes
ad28755
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa466b968b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa466b96940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa466b969d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa466b96a60>", "_build": "<function ActorCriticPolicy._build at 0x7fa466b96af0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa466b96b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa466b96c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa466b96ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa466b96d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa466b96dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa466b96e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa466b96ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa466bacb40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679918498233410769, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEh0dD9fOms/fs8gv4b7J78pF0w/nzSHv+MvGD8+y4C9RQu3P1oBvr9HQYi/gG70vboYqj9nO7G/cEwJv/9ybMAeit8/X8gTwO6LOL54ZOa/2O8dv5GKEj/rDJy+8GAZwDLCVL+ORc+/xUmMPig5wL9vVOk+za2ePp69oz5SQ5c/7DXGvv3iuT9hMjc/N13avvAbfr9mH7G+PEUMv7lz7b/sop++vlfIP3Vvqr+eQFg+ffYYvyaBFb2SSQQ/GUU3vwRoO78wQ/q+SLmbvrZHiz4ywlS/jhceP8VJjD7rdyo/XJVdvho7G76BYjM/QYVOv8NW8z7bvlLA1ER2vXgyiz85aXs/m125P0OLnz0z+rg/ojVBv6nv/7+dn6q9khIiQIMLgj8rcqM/+WTqvs6B7b+KTsC91iruP4xnib9sIby/MsJUv45Fz7/FSYw+KDnAv0QVjr2GCGa/91RmP9AcxT4KPhQ/ExVuP+IDkj4mVbO+QwrDPYaLWb/EvRQ/+R0GvyV+sb+O1kQ/HSNIv6DqC7/8WEe/0IaCP5IPCj/IfJI8HM7KPpXk874eMJc+es0PPjLCVL+OFx4/xUmMPut3Kj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADMByM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEHyXvQAAAADdufK/AAAAACLSkr0AAAAAJi3oPwAAAAAsVRQ9AAAAAApX/D8AAAAAufOEvQAAAAAQRu2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhGt8NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMHS6L0AAAAA7O7vvwAAAAAV9Lq9AAAAADrMAEAAAAAABu6MOwAAAACk9/Y/AAAAABkzubsAAAAAAkT7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALFpbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBsmPE7AAAAAOgi/78AAAAAxBRJvQAAAABfwfQ/AAAAAHidh70AAAAA8rPqPwAAAADwVrI9AAAAAMMw378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTr4Y0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANGIjvQAAAADlCQHAAAAAAAlPBL4AAAAAxpLmPwAAAABfNR87AAAAAD6K3T8AAAAAMm7BvQAAAAB9Gt+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJk7zCfpUxWMAWyUTegDjAF0lEdArImK4J/oaHV9lChoBkdAmXMtm16VuGgHTegDaAhHQKyLZBHCoCN1fZQoaAZHQJMqpikO7QNoB03oA2gIR0Cskq7LlmvodX2UKGgGR0CVa/dOIqLCaAdN6ANoCEdArJTb59E1EXV9lChoBkdAlPCDbvgFYGgHTegDaAhHQKyXM38XN1R1fZQoaAZHQIxXqX6ZYxNoB03oA2gIR0CsmgdLQHAzdX2UKGgGR0CBjp/o7muDaAdN6ANoCEdArKMlPtUn5XV9lChoBkdAhmM9NnGsFWgHTegDaAhHQKylPIKc/dJ1fZQoaAZHQIDZCWNWEK5oB03oA2gIR0Cspsyy+pOvdX2UKGgGR0CTBFb+cYqHaAdN6ANoCEdArKi3Uaya/nV9lChoBkdAmPvsO9WZJGgHTegDaAhHQKyv49CeEqV1fZQoaAZHQJYBlMURFqloB03oA2gIR0CssfrbHp8ndX2UKGgGR0CSo0sBhhH9aAdN6ANoCEdArLN8unMt9XV9lChoBkdAmWMv3ai9I2gHTegDaAhHQKy2ZUG3WnV1fZQoaAZHQKB/ptu1ndxoB03oA2gIR0CswJZ4wAU+dX2UKGgGR0CgrGHIp6QeaAdN6ANoCEdArMLLabnX/nV9lChoBkdAoJO01fmcOWgHTegDaAhHQKzEWn752yN1fZQoaAZHQKCMH1klNURoB03oA2gIR0Csxkjmjj7zdX2UKGgGR0CgRMo24uscaAdN6ANoCEdArM1WCVbA13V9lChoBkdAoFjQ7ihnJ2gHTegDaAhHQKzPexJNCZ51fZQoaAZHQKAo18IAwPBoB03oA2gIR0Cs0Qm96C17dX2UKGgGR0Cdxzlj3EhraAdN6ANoCEdArNMg6IWP93V9lChoBkdAm+Dtv863iWgHTegDaAhHQKzd+OWBz3h1fZQoaAZHQJpF0F6iTMdoB03oA2gIR0Cs4BfD1oQGdX2UKGgGR0CaeCQ6p5u7aAdN6ANoCEdArOG0pAlfJHV9lChoBkdAmyW+uzQeFWgHTegDaAhHQKzjtMNc4YJ1fZQoaAZHQJgz3kYGdI5oB03oA2gIR0Cs6qqGtZFHdX2UKGgGR0CWr+hm5DqoaAdN6ANoCEdArOzPIdU83nV9lChoBkdAlwh71ZkkKWgHTegDaAhHQKzuUSidrft1fZQoaAZHQJaq5jJ+2E1oB03oA2gIR0Cs8CeFL39KdX2UKGgGR0CeH9GUOd5IaAdN6ANoCEdArPqtC3PRiXV9lChoBkdAnMBD9wWFe2gHTegDaAhHQKz9ia3I+4d1fZQoaAZHQJr6I1m8M/hoB03oA2gIR0Cs/wtFa0QcdX2UKGgGR0CfCljawljWaAdN6ANoCEdArQDp//echHV9lChoBkdAnOkXJ5mh/WgHTegDaAhHQK0IBiONo8J1fZQoaAZHQJ7ALMcIZ65oB03oA2gIR0CtCidQXQ+mdX2UKGgGR0Cde3cs189faAdN6ANoCEdArQuvc8DB/XV9lChoBkdAnn9naN+9amgHTegDaAhHQK0NkskIHC51fZQoaAZHQJ27E2/BWPtoB03oA2gIR0CtF0y5I6KcdX2UKGgGR0CfHyHcUM5PaAdN6ANoCEdArRrAyXUpeHV9lChoBkdAn4NdKRMewWgHTegDaAhHQK0cn7sv7Fd1fZQoaAZHQJ+0Lfm9xqBoB03oA2gIR0CtHn8Oby6MdX2UKGgGR0Cdh7uIhyKfaAdN6ANoCEdArSWEzXSSeXV9lChoBkdAnqknJtBOYmgHTegDaAhHQK0nlBOYYzl1fZQoaAZHQJ2rtdv863loB03oA2gIR0CtKR/z8P4EdX2UKGgGR0CcE+80DU3GaAdN6ANoCEdArSsB6MR6GHV9lChoBkdAoNlJu/Dcd2gHTegDaAhHQK0zmTAWSEF1fZQoaAZHQKCXDtNSIgxoB03oA2gIR0CtNwItcv/SdX2UKGgGR0CgfHjc/MW5aAdN6ANoCEdArTl2LR8c/HV9lChoBkdAoOFp5mh/RWgHTegDaAhHQK0741IAfdR1fZQoaAZHQJotoduHerNoB03oA2gIR0CtQs2UbDMvdX2UKGgGR0CeIJ8aXKKYaAdN6ANoCEdArUTtXko4MnV9lChoBkdAn9/NZid8RmgHTegDaAhHQK1GiZWJaaF1fZQoaAZHQJibGN0eU6hoB03oA2gIR0CtSHB19v0idX2UKGgGR0CeypK9PDYRaAdN6ANoCEdArU/zPjXFtXV9lChoBkdAnNpyFCb+cmgHTegDaAhHQK1TOZ2pyZN1fZQoaAZHQJxxNAUtZmtoB03oA2gIR0CtVb238XN1dX2UKGgGR0CZV919fCyhaAdN6ANoCEdArVjHbAUL2HV9lChoBkdAl/aQqVhTfmgHTegDaAhHQK1gReRgZ0l1fZQoaAZHQJWNYxFiKBNoB03oA2gIR0CtYmdELH+7dX2UKGgGR0CVMzkq+ajOaAdN6ANoCEdArWPy2v0ROHV9lChoBkdAll9NOEdvKmgHTegDaAhHQK1lwvGIbfh1fZQoaAZHQJwzq0Y0l7doB03oA2gIR0CtbKxNZeRgdX2UKGgGR0CcaihKlHjIaAdN6ANoCEdArW9ZiRW913V9lChoBkdAnDhf6GgzxmgHTegDaAhHQK1xqvwmVqx1fZQoaAZHQJvdTFKkEcNoB03oA2gIR0CtdKuDaoMsdX2UKGgGR0CcPr8neBQOaAdN6ANoCEdArX2Poouwo3V9lChoBkdAmiicwYcebWgHTegDaAhHQK1/r9If8uV1fZQoaAZHQJxk6LBKtgdoB03oA2gIR0CtgS+ruIAPdX2UKGgGR0CbmOpAD7qIaAdN6ANoCEdArYMIgq3EynV9lChoBkdAmfj10PpY92gHTegDaAhHQK2KEzw+dLB1fZQoaAZHQJuXipsGgSRoB03oA2gIR0CtjD3Ux20RdX2UKGgGR0CaXhzfaYeDaAdN6ANoCEdArY4euLaVU3V9lChoBkdAmEnBcAzYVmgHTegDaAhHQK2Q9+aScLB1fZQoaAZHQJj+lG2CulpoB03oA2gIR0CtmwTPSlWPdX2UKGgGR0CawgnVG0/oaAdN6ANoCEdArZ0gaYNRWXV9lChoBkdAmzJCXUpd8mgHTegDaAhHQK2em6YE4ed1fZQoaAZHQJzKy/ag261oB03oA2gIR0CtoG4e1a4ddX2UKGgGR0Cdy7VjqfOEaAdN6ANoCEdAraeBCIDYAnV9lChoBkdAm+jY73fygGgHTegDaAhHQK2pt5oGpuN1fZQoaAZHQJ8KPiJfplloB03oA2gIR0Ctq0G7rcCYdX2UKGgGR0Cezfc4HX2/aAdN6ANoCEdAra2WtKZlWnV9lChoBkdAniFDPfKp1mgHTegDaAhHQK24VfpD/l11fZQoaAZHQJ/fJ2vB7/poB03oA2gIR0CtumjtG/etdX2UKGgGR0CfrumCROk+aAdN6ANoCEdArbvvgYP5HnV9lChoBkdAnGK0fgaWHGgHTegDaAhHQK29wrHU+cJ1fZQoaAZHQJnUSdoWYWtoB03oA2gIR0CtxOby6MBIdX2UKGgGR0CV+P25xzaLaAdN6ANoCEdArccGHSF493V9lChoBkdAlnC8asIVumgHTegDaAhHQK3Ilttygf51fZQoaAZHQJKKPyAhB7hoB03oA2gIR0CtynvZRKpUdX2UKGgGR0CWWBCGN70GaAdN6ANoCEdArdVBnpSrHXV9lChoBkdAmYvwzguRLmgHTegDaAhHQK3X6/336AR1fZQoaAZHQJmxhY2bXpZoB03oA2gIR0Ct2W4Xwb2ldX2UKGgGR0Ca8k82aUiZaAdN6ANoCEdArdtHEQ5FPXV9lChoBkdAmzdq+vhZQ2gHTegDaAhHQK3ib1anrIJ1fZQoaAZHQJap5hw2l2xoB03oA2gIR0Ct5IdVFQVLdX2UKGgGR0CZVEwb2lEaaAdN6ANoCEdAreYSoMrmQ3V9lChoBkdAnR1ZBgNPQGgHTegDaAhHQK3n95Ec81Z1fZQoaAZHQJxhxlI3BHloB03oA2gIR0Ct8ZBbnoxIdX2UKGgGR0CeJXAv+OwQaAdN6ANoCEdArfT/sAvL5nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}