|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/resnet-18 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: resnet-18-resnet-18 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.3541666666666667 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# resnet-18-resnet-18 |
|
|
|
This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 5878685290980833992550249398272.0000 |
|
- Accuracy: 0.3542 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:------------------------------------:|:------:|:----:|:------------------------------------:|:--------:| |
|
| No log | 0.8889 | 6 | 5256596847186447919144532705280.0000 | 0.3542 | |
|
| 6252348666680642391375611953152.0000 | 1.9259 | 13 | 5816409290772115792559022800896.0000 | 0.3542 | |
|
| 5941338476045271956843984322560.0000 | 2.9630 | 20 | 5569209952566045840858865991680.0000 | 0.3542 | |
|
| 5941338476045271956843984322560.0000 | 4.0 | 27 | 5764530657074993210784856670208.0000 | 0.3542 | |
|
| 5978113032337293509815187800064.0000 | 4.8889 | 33 | 5717174614869048956753266343936.0000 | 0.3542 | |
|
| 6377920275134342219963975073792.0000 | 5.9259 | 40 | 5885479454087068208512098107392.0000 | 0.3542 | |
|
| 6377920275134342219963975073792.0000 | 6.9630 | 47 | 5693683372805207289944963284992.0000 | 0.3542 | |
|
| 6201930657158778429750307192832.0000 | 8.0 | 54 | 5815479022353922335409086398464.0000 | 0.3542 | |
|
| 6266525497982100125501481811968.0000 | 8.8889 | 60 | 5878685290980833992550249398272.0000 | 0.3542 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|