xlnet-base-cased_fold_7_binary_v1
This model is a fine-tuned version of xlnet-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7774
- F1: 0.8111
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 288 | 0.4189 | 0.7903 |
0.432 | 2.0 | 576 | 0.3927 | 0.8045 |
0.432 | 3.0 | 864 | 0.4868 | 0.8108 |
0.2573 | 4.0 | 1152 | 0.6763 | 0.8019 |
0.2573 | 5.0 | 1440 | 0.8132 | 0.8105 |
0.1612 | 6.0 | 1728 | 0.8544 | 0.8086 |
0.0972 | 7.0 | 2016 | 1.1274 | 0.8109 |
0.0972 | 8.0 | 2304 | 1.2622 | 0.8056 |
0.0515 | 9.0 | 2592 | 1.3398 | 0.8013 |
0.0515 | 10.0 | 2880 | 1.5421 | 0.8082 |
0.0244 | 11.0 | 3168 | 1.4931 | 0.8042 |
0.0244 | 12.0 | 3456 | 1.5744 | 0.8045 |
0.0287 | 13.0 | 3744 | 1.4169 | 0.8091 |
0.0255 | 14.0 | 4032 | 1.5790 | 0.7999 |
0.0255 | 15.0 | 4320 | 1.6094 | 0.7994 |
0.0098 | 16.0 | 4608 | 1.5758 | 0.8006 |
0.0098 | 17.0 | 4896 | 1.5326 | 0.8140 |
0.0203 | 18.0 | 5184 | 1.6431 | 0.8114 |
0.0203 | 19.0 | 5472 | 1.7105 | 0.8072 |
0.0104 | 20.0 | 5760 | 1.6353 | 0.8139 |
0.0062 | 21.0 | 6048 | 1.6762 | 0.8108 |
0.0062 | 22.0 | 6336 | 1.7076 | 0.8106 |
0.0088 | 23.0 | 6624 | 1.7887 | 0.8035 |
0.0088 | 24.0 | 6912 | 1.7731 | 0.8099 |
0.0026 | 25.0 | 7200 | 1.7774 | 0.8111 |
Framework versions
- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.