elopezlopez
commited on
Commit
·
2fafe07
1
Parent(s):
af59c22
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
model-index:
|
8 |
+
- name: xlnet-base-cased_fold_10_binary_v1
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# xlnet-base-cased_fold_10_binary_v1
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.7782
|
20 |
+
- F1: 0.8137
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-05
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 16
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 25
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
51 |
+
| No log | 1.0 | 288 | 0.3796 | 0.8145 |
|
52 |
+
| 0.4196 | 2.0 | 576 | 0.4319 | 0.7810 |
|
53 |
+
| 0.4196 | 3.0 | 864 | 0.6227 | 0.8002 |
|
54 |
+
| 0.231 | 4.0 | 1152 | 0.6258 | 0.7941 |
|
55 |
+
| 0.231 | 5.0 | 1440 | 1.0692 | 0.7866 |
|
56 |
+
| 0.1307 | 6.0 | 1728 | 1.1257 | 0.8005 |
|
57 |
+
| 0.0756 | 7.0 | 2016 | 1.2283 | 0.8072 |
|
58 |
+
| 0.0756 | 8.0 | 2304 | 1.3407 | 0.8061 |
|
59 |
+
| 0.0486 | 9.0 | 2592 | 1.5232 | 0.8059 |
|
60 |
+
| 0.0486 | 10.0 | 2880 | 1.6731 | 0.8053 |
|
61 |
+
| 0.0339 | 11.0 | 3168 | 1.6536 | 0.8087 |
|
62 |
+
| 0.0339 | 12.0 | 3456 | 1.7526 | 0.7996 |
|
63 |
+
| 0.019 | 13.0 | 3744 | 1.6662 | 0.7909 |
|
64 |
+
| 0.0237 | 14.0 | 4032 | 1.6028 | 0.8071 |
|
65 |
+
| 0.0237 | 15.0 | 4320 | 1.7627 | 0.7964 |
|
66 |
+
| 0.0078 | 16.0 | 4608 | 1.6513 | 0.8169 |
|
67 |
+
| 0.0078 | 17.0 | 4896 | 1.7795 | 0.8039 |
|
68 |
+
| 0.015 | 18.0 | 5184 | 1.8669 | 0.7935 |
|
69 |
+
| 0.015 | 19.0 | 5472 | 1.6288 | 0.8118 |
|
70 |
+
| 0.0124 | 20.0 | 5760 | 1.6630 | 0.8104 |
|
71 |
+
| 0.004 | 21.0 | 6048 | 1.7418 | 0.8167 |
|
72 |
+
| 0.004 | 22.0 | 6336 | 1.7651 | 0.8128 |
|
73 |
+
| 0.0043 | 23.0 | 6624 | 1.7279 | 0.8163 |
|
74 |
+
| 0.0043 | 24.0 | 6912 | 1.8177 | 0.8093 |
|
75 |
+
| 0.004 | 25.0 | 7200 | 1.7782 | 0.8137 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.21.1
|
81 |
+
- Pytorch 1.12.0+cu113
|
82 |
+
- Datasets 2.4.0
|
83 |
+
- Tokenizers 0.12.1
|