xlnet-base-cased_fold_10_binary_v1
This model is a fine-tuned version of xlnet-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7782
- F1: 0.8137
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 288 | 0.3796 | 0.8145 |
0.4196 | 2.0 | 576 | 0.4319 | 0.7810 |
0.4196 | 3.0 | 864 | 0.6227 | 0.8002 |
0.231 | 4.0 | 1152 | 0.6258 | 0.7941 |
0.231 | 5.0 | 1440 | 1.0692 | 0.7866 |
0.1307 | 6.0 | 1728 | 1.1257 | 0.8005 |
0.0756 | 7.0 | 2016 | 1.2283 | 0.8072 |
0.0756 | 8.0 | 2304 | 1.3407 | 0.8061 |
0.0486 | 9.0 | 2592 | 1.5232 | 0.8059 |
0.0486 | 10.0 | 2880 | 1.6731 | 0.8053 |
0.0339 | 11.0 | 3168 | 1.6536 | 0.8087 |
0.0339 | 12.0 | 3456 | 1.7526 | 0.7996 |
0.019 | 13.0 | 3744 | 1.6662 | 0.7909 |
0.0237 | 14.0 | 4032 | 1.6028 | 0.8071 |
0.0237 | 15.0 | 4320 | 1.7627 | 0.7964 |
0.0078 | 16.0 | 4608 | 1.6513 | 0.8169 |
0.0078 | 17.0 | 4896 | 1.7795 | 0.8039 |
0.015 | 18.0 | 5184 | 1.8669 | 0.7935 |
0.015 | 19.0 | 5472 | 1.6288 | 0.8118 |
0.0124 | 20.0 | 5760 | 1.6630 | 0.8104 |
0.004 | 21.0 | 6048 | 1.7418 | 0.8167 |
0.004 | 22.0 | 6336 | 1.7651 | 0.8128 |
0.0043 | 23.0 | 6624 | 1.7279 | 0.8163 |
0.0043 | 24.0 | 6912 | 1.8177 | 0.8093 |
0.004 | 25.0 | 7200 | 1.7782 | 0.8137 |
Framework versions
- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.