distilbert-base-uncased_fold_9_binary_v1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6965
  • F1: 0.8090

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 291 0.4193 0.7989
0.3993 2.0 582 0.4039 0.8026
0.3993 3.0 873 0.5227 0.7995
0.2044 4.0 1164 0.7264 0.8011
0.2044 5.0 1455 0.8497 0.8007
0.0882 6.0 1746 0.9543 0.8055
0.0374 7.0 2037 1.1349 0.7997
0.0374 8.0 2328 1.3175 0.8009
0.0151 9.0 2619 1.3585 0.8030
0.0151 10.0 2910 1.4202 0.8067
0.0068 11.0 3201 1.4364 0.8108
0.0068 12.0 3492 1.4443 0.8088
0.0096 13.0 3783 1.5308 0.8075
0.0031 14.0 4074 1.5061 0.8020
0.0031 15.0 4365 1.5769 0.7980
0.0048 16.0 4656 1.5962 0.8038
0.0048 17.0 4947 1.5383 0.8085
0.0067 18.0 5238 1.5456 0.8158
0.0062 19.0 5529 1.6325 0.8044
0.0062 20.0 5820 1.5430 0.8141
0.0029 21.0 6111 1.6590 0.8117
0.0029 22.0 6402 1.6650 0.8112
0.0017 23.0 6693 1.7016 0.8053
0.0017 24.0 6984 1.6998 0.8090
0.0011 25.0 7275 1.6965 0.8090

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.