distilbert-base-uncased_fold_8_ternary_v1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8474
  • F1: 0.8022

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 289 0.5398 0.7838
0.5509 2.0 578 0.6062 0.7703
0.5509 3.0 867 0.6563 0.7666
0.2366 4.0 1156 0.7688 0.7961
0.2366 5.0 1445 1.0968 0.7690
0.1247 6.0 1734 1.1414 0.7924
0.0482 7.0 2023 1.2159 0.7875
0.0482 8.0 2312 1.2703 0.7887
0.0245 9.0 2601 1.3401 0.7985
0.0245 10.0 2890 1.4645 0.7961
0.0149 11.0 3179 1.5632 0.7801
0.0149 12.0 3468 1.5249 0.7875
0.0124 13.0 3757 1.6263 0.7948
0.0038 14.0 4046 1.8059 0.7764
0.0038 15.0 4335 1.7649 0.7776
0.0061 16.0 4624 1.8293 0.7850
0.0061 17.0 4913 1.8316 0.7887
0.0022 18.0 5202 1.7628 0.7973
0.0022 19.0 5491 1.8763 0.7862
0.002 20.0 5780 1.8409 0.7899
0.0026 21.0 6069 1.8146 0.8022
0.0026 22.0 6358 1.8420 0.7973
0.0008 23.0 6647 1.8683 0.8010
0.0008 24.0 6936 1.8571 0.8010
0.0015 25.0 7225 1.8474 0.8022

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.