distilbert-base-uncased_fold_4_ternary_v1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9355
  • F1: 0.7891

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 289 0.5637 0.7485
0.5729 2.0 578 0.5305 0.7805
0.5729 3.0 867 0.6948 0.7670
0.2548 4.0 1156 0.8351 0.7744
0.2548 5.0 1445 1.0005 0.8027
0.1157 6.0 1734 1.1578 0.7978
0.0473 7.0 2023 1.2275 0.7953
0.0473 8.0 2312 1.3245 0.7916
0.0276 9.0 2601 1.3728 0.7953
0.0276 10.0 2890 1.4577 0.7867
0.0149 11.0 3179 1.5832 0.7731
0.0149 12.0 3468 1.5056 0.7818
0.0143 13.0 3757 1.6263 0.7904
0.0066 14.0 4046 1.6596 0.7793
0.0066 15.0 4335 1.6795 0.7941
0.0022 16.0 4624 1.8443 0.7744
0.0022 17.0 4913 1.7160 0.7953
0.0034 18.0 5202 1.7819 0.7781
0.0034 19.0 5491 1.7931 0.7904
0.0036 20.0 5780 1.8447 0.7818
0.0014 21.0 6069 1.9975 0.7707
0.0014 22.0 6358 1.9324 0.7830
0.0008 23.0 6647 1.9086 0.7842
0.0008 24.0 6936 1.9507 0.7867
0.0002 25.0 7225 1.9355 0.7891

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.