distilbert-base-uncased_fold_4_ternary_v1
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.9355
- F1: 0.7891
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 289 | 0.5637 | 0.7485 |
0.5729 | 2.0 | 578 | 0.5305 | 0.7805 |
0.5729 | 3.0 | 867 | 0.6948 | 0.7670 |
0.2548 | 4.0 | 1156 | 0.8351 | 0.7744 |
0.2548 | 5.0 | 1445 | 1.0005 | 0.8027 |
0.1157 | 6.0 | 1734 | 1.1578 | 0.7978 |
0.0473 | 7.0 | 2023 | 1.2275 | 0.7953 |
0.0473 | 8.0 | 2312 | 1.3245 | 0.7916 |
0.0276 | 9.0 | 2601 | 1.3728 | 0.7953 |
0.0276 | 10.0 | 2890 | 1.4577 | 0.7867 |
0.0149 | 11.0 | 3179 | 1.5832 | 0.7731 |
0.0149 | 12.0 | 3468 | 1.5056 | 0.7818 |
0.0143 | 13.0 | 3757 | 1.6263 | 0.7904 |
0.0066 | 14.0 | 4046 | 1.6596 | 0.7793 |
0.0066 | 15.0 | 4335 | 1.6795 | 0.7941 |
0.0022 | 16.0 | 4624 | 1.8443 | 0.7744 |
0.0022 | 17.0 | 4913 | 1.7160 | 0.7953 |
0.0034 | 18.0 | 5202 | 1.7819 | 0.7781 |
0.0034 | 19.0 | 5491 | 1.7931 | 0.7904 |
0.0036 | 20.0 | 5780 | 1.8447 | 0.7818 |
0.0014 | 21.0 | 6069 | 1.9975 | 0.7707 |
0.0014 | 22.0 | 6358 | 1.9324 | 0.7830 |
0.0008 | 23.0 | 6647 | 1.9086 | 0.7842 |
0.0008 | 24.0 | 6936 | 1.9507 | 0.7867 |
0.0002 | 25.0 | 7225 | 1.9355 | 0.7891 |
Framework versions
- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.