distilbert-base-uncased_fold_3_ternary_v1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8908
  • F1: 0.7879

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 289 0.5873 0.7636
0.5479 2.0 578 0.5788 0.7697
0.5479 3.0 867 0.6286 0.7770
0.2412 4.0 1156 0.8845 0.7661
0.2412 5.0 1445 0.9894 0.7818
0.1191 6.0 1734 1.0856 0.7842
0.0543 7.0 2023 1.2852 0.7830
0.0543 8.0 2312 1.4295 0.7673
0.0223 9.0 2601 1.4716 0.7806
0.0223 10.0 2890 1.6007 0.7636
0.0122 11.0 3179 1.6744 0.7673
0.0122 12.0 3468 1.6954 0.7685
0.0129 13.0 3757 1.7273 0.7733
0.0057 14.0 4046 1.7114 0.7758
0.0057 15.0 4335 1.7480 0.7733
0.0045 16.0 4624 1.8322 0.7830
0.0045 17.0 4913 1.7448 0.7830
0.0047 18.0 5202 1.8126 0.7782
0.0047 19.0 5491 1.9021 0.7673
0.0018 20.0 5780 1.9011 0.7830
0.0026 21.0 6069 1.8771 0.7806
0.0026 22.0 6358 1.8634 0.7806
0.0012 23.0 6647 1.8926 0.7830
0.0012 24.0 6936 1.8922 0.7855
0.0005 25.0 7225 1.8908 0.7879

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.