distilbert-base-uncased_fold_1_ternary
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.0582
- F1: 0.7326
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 290 | 0.5524 | 0.6755 |
0.5648 | 2.0 | 580 | 0.5654 | 0.7124 |
0.5648 | 3.0 | 870 | 0.6547 | 0.6896 |
0.2712 | 4.0 | 1160 | 0.8916 | 0.7263 |
0.2712 | 5.0 | 1450 | 1.1187 | 0.7120 |
0.1147 | 6.0 | 1740 | 1.2778 | 0.7114 |
0.0476 | 7.0 | 2030 | 1.4441 | 0.7151 |
0.0476 | 8.0 | 2320 | 1.5535 | 0.7133 |
0.0187 | 9.0 | 2610 | 1.6439 | 0.7212 |
0.0187 | 10.0 | 2900 | 1.7261 | 0.7313 |
0.0138 | 11.0 | 3190 | 1.6806 | 0.7292 |
0.0138 | 12.0 | 3480 | 1.8425 | 0.7111 |
0.009 | 13.0 | 3770 | 1.9207 | 0.7213 |
0.0045 | 14.0 | 4060 | 1.8900 | 0.7202 |
0.0045 | 15.0 | 4350 | 1.9730 | 0.7216 |
0.0042 | 16.0 | 4640 | 2.0775 | 0.7041 |
0.0042 | 17.0 | 4930 | 2.0514 | 0.7106 |
0.0019 | 18.0 | 5220 | 2.0582 | 0.7326 |
0.0039 | 19.0 | 5510 | 2.1010 | 0.7081 |
0.0039 | 20.0 | 5800 | 2.0487 | 0.7273 |
0.0025 | 21.0 | 6090 | 2.0415 | 0.7254 |
0.0025 | 22.0 | 6380 | 2.0753 | 0.7157 |
0.0017 | 23.0 | 6670 | 2.0554 | 0.7246 |
0.0017 | 24.0 | 6960 | 2.0644 | 0.7290 |
0.0001 | 25.0 | 7250 | 2.0711 | 0.7310 |
Framework versions
- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.