File size: 2,801 Bytes
f389969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67cdba7
 
f389969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67cdba7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f389969
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: distilbert-base-uncased_fold_1_binary
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased_fold_1_binary

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5992
- F1: 0.7687

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 1.0   | 288  | 0.3960          | 0.7467 |
| 0.3988        | 2.0   | 576  | 0.3947          | 0.7487 |
| 0.3988        | 3.0   | 864  | 0.4511          | 0.7662 |
| 0.1853        | 4.0   | 1152 | 0.7226          | 0.7285 |
| 0.1853        | 5.0   | 1440 | 0.9398          | 0.7334 |
| 0.0827        | 6.0   | 1728 | 1.0547          | 0.7427 |
| 0.0287        | 7.0   | 2016 | 1.1602          | 0.7563 |
| 0.0287        | 8.0   | 2304 | 1.3332          | 0.7171 |
| 0.0219        | 9.0   | 2592 | 1.3429          | 0.7420 |
| 0.0219        | 10.0  | 2880 | 1.2603          | 0.7648 |
| 0.0139        | 11.0  | 3168 | 1.4126          | 0.7569 |
| 0.0139        | 12.0  | 3456 | 1.3195          | 0.7483 |
| 0.0115        | 13.0  | 3744 | 1.4356          | 0.7491 |
| 0.0035        | 14.0  | 4032 | 1.5693          | 0.7636 |
| 0.0035        | 15.0  | 4320 | 1.4071          | 0.7662 |
| 0.0071        | 16.0  | 4608 | 1.4561          | 0.7579 |
| 0.0071        | 17.0  | 4896 | 1.5405          | 0.7634 |
| 0.0041        | 18.0  | 5184 | 1.5862          | 0.7589 |
| 0.0041        | 19.0  | 5472 | 1.6782          | 0.76   |
| 0.0024        | 20.0  | 5760 | 1.5699          | 0.7677 |
| 0.0006        | 21.0  | 6048 | 1.5991          | 0.7467 |
| 0.0006        | 22.0  | 6336 | 1.6205          | 0.7682 |
| 0.0003        | 23.0  | 6624 | 1.6334          | 0.7643 |
| 0.0003        | 24.0  | 6912 | 1.5992          | 0.7687 |
| 0.0011        | 25.0  | 7200 | 1.6053          | 0.7624 |


### Framework versions

- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1