distilbert-base-uncased_fold_1_binary

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5992
  • F1: 0.7687

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 288 0.3960 0.7467
0.3988 2.0 576 0.3947 0.7487
0.3988 3.0 864 0.4511 0.7662
0.1853 4.0 1152 0.7226 0.7285
0.1853 5.0 1440 0.9398 0.7334
0.0827 6.0 1728 1.0547 0.7427
0.0287 7.0 2016 1.1602 0.7563
0.0287 8.0 2304 1.3332 0.7171
0.0219 9.0 2592 1.3429 0.7420
0.0219 10.0 2880 1.2603 0.7648
0.0139 11.0 3168 1.4126 0.7569
0.0139 12.0 3456 1.3195 0.7483
0.0115 13.0 3744 1.4356 0.7491
0.0035 14.0 4032 1.5693 0.7636
0.0035 15.0 4320 1.4071 0.7662
0.0071 16.0 4608 1.4561 0.7579
0.0071 17.0 4896 1.5405 0.7634
0.0041 18.0 5184 1.5862 0.7589
0.0041 19.0 5472 1.6782 0.76
0.0024 20.0 5760 1.5699 0.7677
0.0006 21.0 6048 1.5991 0.7467
0.0006 22.0 6336 1.6205 0.7682
0.0003 23.0 6624 1.6334 0.7643
0.0003 24.0 6912 1.5992 0.7687
0.0011 25.0 7200 1.6053 0.7624

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.