distilbert-base-uncased_fold_13_binary_v1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7433
  • F1: 0.8138

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 291 0.4101 0.8087
0.4128 2.0 582 0.4605 0.8197
0.4128 3.0 873 0.5011 0.8130
0.1997 4.0 1164 0.6882 0.8147
0.1997 5.0 1455 0.9653 0.8092
0.0913 6.0 1746 1.1020 0.8031
0.0347 7.0 2037 1.2687 0.8050
0.0347 8.0 2328 1.2383 0.8103
0.0173 9.0 2619 1.3631 0.8066
0.0173 10.0 2910 1.4282 0.8001
0.0104 11.0 3201 1.4410 0.8179
0.0104 12.0 3492 1.5318 0.8018
0.0063 13.0 3783 1.5866 0.8018
0.0043 14.0 4074 1.4987 0.8159
0.0043 15.0 4365 1.6275 0.8181
0.0048 16.0 4656 1.5811 0.8231
0.0048 17.0 4947 1.6228 0.8182
0.0048 18.0 5238 1.7235 0.8138
0.0055 19.0 5529 1.7018 0.8066
0.0055 20.0 5820 1.7340 0.8069
0.0046 21.0 6111 1.7143 0.8156
0.0046 22.0 6402 1.7367 0.8159
0.0037 23.0 6693 1.7551 0.8151
0.0037 24.0 6984 1.7479 0.8145
0.0009 25.0 7275 1.7433 0.8138

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.