distilbert-base-uncased_fold_10_binary_v1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6912
  • F1: 0.7977

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 288 0.4002 0.8012
0.4056 2.0 576 0.4372 0.8075
0.4056 3.0 864 0.4720 0.8071
0.1958 4.0 1152 0.8156 0.7980
0.1958 5.0 1440 0.8633 0.8055
0.0847 6.0 1728 0.9761 0.8041
0.0356 7.0 2016 1.1816 0.7861
0.0356 8.0 2304 1.2251 0.7918
0.0215 9.0 2592 1.3423 0.7798
0.0215 10.0 2880 1.3888 0.7913
0.013 11.0 3168 1.2899 0.8040
0.013 12.0 3456 1.4247 0.8051
0.0049 13.0 3744 1.5436 0.7991
0.0061 14.0 4032 1.5762 0.7991
0.0061 15.0 4320 1.5461 0.7998
0.0054 16.0 4608 1.5622 0.8018
0.0054 17.0 4896 1.6658 0.7991
0.0021 18.0 5184 1.6765 0.7972
0.0021 19.0 5472 1.6864 0.7973
0.0052 20.0 5760 1.6303 0.8030
0.0029 21.0 6048 1.6631 0.7947
0.0029 22.0 6336 1.6571 0.8006
0.0027 23.0 6624 1.6729 0.7949
0.0027 24.0 6912 1.6931 0.7934
0.0001 25.0 7200 1.6912 0.7977

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.