metadata
base_model: huggingface/CodeBERTa-small-v1
tags:
- generated_from_trainer
metrics:
- accuracy
datasets:
- ejschwartz/oo-method-test-split
widget:
- text: ' L1: 55 ?? push ebp 8b ec ?? mov ebp, esp 5d ?? pop ebp c3 ?? ret '
example_title: Function 1
- text: >2
L1: 55 ?? push ebp 8b ec ?? mov ebp, esp 51 ?? push ecx a1 b0 5d 43 00 ?? mov eax, dword ds:[0x00435db0] 83 f8 fe ?? cmp eax, 0xfe<254,-2> 75 0a ?? jne basic block L4
L2: e8 4e 17 00 00 ?? call function 0x00415d25
L3: a1 b0 5d 43 00 ?? mov eax, dword ds:[0x00435db0]
L4: 83 f8 ff ?? cmp eax, 0xff<255,-1> 75 07 ?? jne basic block L6
L5: b8 ff ff 00 00 ?? mov eax, 0x0000ffff eb 1b ?? jmp basic block L9
L6: 6a 00 ?? push 0 8d 4d fc ?? lea ecx, ss:[ebp + 0xfc<252,-4>] 51 ??
push ecx 6a 01 ?? push 1 8d 4d 08 ?? lea ecx, ss:[ebp + 8] 51 ?? push ecx
50 ?? push eax ff 15 28 91 43 00 ?? call dword ds:[0x00439128]
L7: 85 c0 ?? test eax, eax 74 e2 ?? je basic block L5
L8: 66 8b 45 08 ?? mov ax, word ss:[ebp + 8]
L9: 8b e5 ?? mov esp, ebp 5d ?? pop ebp c3 ?? ret
example_title: Function 2
- text: >2
L1: 0f b7 41 32 ?? movzx eax, word ds:[ecx + 0x32<50>] 83 e8 20 ?? sub eax, 0x20<32> 74 2d ?? je basic block L10
L2: 83 e8 03 ?? sub eax, 3 74 22 ?? je basic block L9
L3: 83 e8 08 ?? sub eax, 8 74 17 ?? je basic block L8
L4: 48 ?? dec eax 83 e8 01 ?? sub eax, 1 74 0b ?? je basic block L7
L5: 83 e8 03 ?? sub eax, 3 75 1c ?? jne basic block L11
L6: 83 49 20 08 ?? or dword ds:[ecx + 0x20<32>], 8 eb 16 ?? jmp basic
block L11
L7: 83 49 20 04 ?? or dword ds:[ecx + 0x20<32>], 4 eb 10 ?? jmp basic
block L11
L8: 83 49 20 01 ?? or dword ds:[ecx + 0x20<32>], 1 eb 0a ?? jmp basic
block L11
L9: 83 49 20 20 ?? or dword ds:[ecx + 0x20<32>], 0x20<32> eb 04 ?? jmp
basic block L11
L10: 83 49 20 02 ?? or dword ds:[ecx + 0x20<32>], 2
L11: b0 01 ?? mov al, 1 c3 ?? ret
example_title: Method 1
- text: >2
L1: 8b ff ?? mov edi, edi 55 ?? push ebp 8b ec ?? mov ebp, esp 83 ec 08 ?? sub esp, 8 89 4d f8 ?? mov dword ss:[ebp + 0xf8<248,-8>], ecx 8b 4d f8 ?? mov ecx, dword ss:[ebp + 0xf8<248,-8>] e8 e6 ac f9 ff ?? call function 0x00401569
L2: 23 45 08 ?? and eax, dword ss:[ebp + 8] 3b 45 08 ?? cmp eax, dword
ss:[ebp + 8] 75 09 ?? jne basic block L4
L3: c7 45 fc 01 00 00 00 ?? mov dword ss:[ebp + 0xfc<252,-4>], 1 eb 07 ??
jmp basic block L5
L4: c7 45 fc 00 00 00 00 ?? mov dword ss:[ebp + 0xfc<252,-4>], 0
L5: 8a 45 fc ?? mov al, byte ss:[ebp + 0xfc<252,-4>] 8b e5 ?? mov esp, ebp
5d ?? pop ebp c2 04 00 ?? ret 4
example_title: Method 2
oo-method-test-model-bylibrary
This model is a fine-tuned version of huggingface/CodeBERTa-small-v1 on the ejschwartz/oo-method-test-split dataset. It achieves the following results on the evaluation set:
- Loss: 0.3303
- Accuracy: 0.9161
- Best Accuracy: 0.9161
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.386135927313411e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 887
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Best Accuracy |
---|---|---|---|---|---|
0.3788 | 0.02 | 178 | 0.6188 | 0.8470 | 0.8470 |
0.1456 | 0.04 | 356 | 0.6572 | 0.8519 | 0.8519 |
0.17 | 0.05 | 534 | 0.4926 | 0.8798 | 0.8798 |
0.1162 | 0.07 | 712 | 0.3303 | 0.9161 | 0.9161 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3