unit1 / config.json
eikoenchine's picture
second commit ppo for lunarlander
3658c4a
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fceaca0e950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fceaca0e9e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fceaca0ea70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fceaca0eb00>", "_build": "<function ActorCriticPolicy._build at 0x7fceaca0eb90>", "forward": "<function ActorCriticPolicy.forward at 0x7fceaca0ec20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fceaca0ecb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fceaca0ed40>", "_predict": "<function ActorCriticPolicy._predict at 0x7fceaca0edd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fceaca0ee60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fceaca0eef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fceaca0ef80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fceaca14880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690328404069678996, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFWfciW3Sa6MAWyUS2KMAXSUR0C0mES53C9AdX2UKGgGR8BdqfllsguAaAdLVWgIR0C0mEf6oESvdX2UKGgGR8BygxVyWAwxaAdLaGgIR0C0mEyElE7XdX2UKGgGR8BB5mTcIqsmaAdLbmgIR0C0mFCXyAhCdX2UKGgGR8BjXHffoA4oaAdLe2gIR0C0mGcFlkH2dX2UKGgGR8BvdcUsWfseaAdLVWgIR0C0mGnTiKixdX2UKGgGR8B2IvJ3gUDdaAdLjWgIR0C0mGzuF6AwdX2UKGgGR8BaiE87p3X7aAdLQmgIR0C0mHCTlkpadX2UKGgGR8BgCTXJ5mh/aAdLfWgIR0C0mHDw2ETQdX2UKGgGR8BM3BlUZNwjaAdLPGgIR0C0mHCTEBKddX2UKGgGR8BeG1schkiEaAdLaWgIR0C0mHv29L6DdX2UKGgGR8BhaPC/GlyjaAdLVWgIR0C0mIAood+5dX2UKGgGR8BtDLpu/DceaAdLdGgIR0C0mJclHBk7dX2UKGgGR8B0fFgnc+JQaAdLdGgIR0C0mKCcLBsRdX2UKGgGR8BVwu9Jz1braAdLUWgIR0C0mKbaM72ddX2UKGgGR8BaJmmHgxagaAdLPmgIR0C0mK16mfoSdX2UKGgGR8BQTAlByCFsaAdLP2gIR0C0mLJBcAzYdX2UKGgGR8Bbxb79AHE/aAdLZmgIR0C0mLn531SPdX2UKGgGR8BeOvqLS/j9aAdLdmgIR0C0mLsbFS88dX2UKGgGR8BjQC704BFNaAdLd2gIR0C0mMYKx9ofdX2UKGgGR8BrVfvrnkksaAdLnmgIR0C0mNgJswcpdX2UKGgGR8BzvQ371qWUaAdLh2gIR0C0mNvFvQ4TdX2UKGgGR8Bpq01/DtPYaAdLY2gIR0C0mPK1XvH+dX2UKGgGR8BmIAht+CsfaAdLe2gIR0C0mP0YO2AodX2UKGgGR8BbfoqCpWFOaAdLRmgIR0C0mP01qFh5dX2UKGgGR8B1IYI1LrX2aAdLdGgIR0C0mPx91EE1dX2UKGgGR8BZU8j3VTaTaAdLRGgIR0C0mQRqbjLkdX2UKGgGR8BWZQTVUdaMaAdLRGgIR0C0mRHjZL7GdX2UKGgGR8Bas+ruIAOsaAdLPWgIR0C0mReGCZnddX2UKGgGR8BTuea8Yht+aAdLd2gIR0C0mRtmpVCHdX2UKGgGR8BUl0/wAlv7aAdLUGgIR0C0mSQyqMm4dX2UKGgGR8Bt16h8IAwPaAdLbGgIR0C0mSebutwKdX2UKGgGR8B0auHgxagVaAdLomgIR0C0mTlMM7U5dX2UKGgGR8Bhje67NB4VaAdLXGgIR0C0mUKySmqHdX2UKGgGR8BcDWFvhqCZaAdLaGgIR0C0mUW51/2CdX2UKGgGR8BVSaXnhbW3aAdLPmgIR0C0mUrMs6JZdX2UKGgGRz/g+8oQWepXaAdLY2gIR0C0mVurU9ZBdX2UKGgGR8BbBRtxdY4iaAdLTmgIR0C0mWAwTM7mdX2UKGgGR8ArfjRUm2LHaAdLaGgIR0C0mXOmWMS9dX2UKGgGR8Br8z3PAwfyaAdLeWgIR0C0mXl7pmmMdX2UKGgGR8BeOkjHGS6laAdLXWgIR0C0mX6L4vexdX2UKGgGR8Bi0ytozvZzaAdLW2gIR0C0mYCAMDwIdX2UKGgGR8B3gJB6a9bpaAdLdGgIR0C0mYml/H5rdX2UKGgGR8BY3dL+PzWgaAdLSWgIR0C0mYxzq8lHdX2UKGgGR8Bs/4A4n4O+aAdLbWgIR0C0mY0gSvkjdX2UKGgGR8Bk3gWFev6kaAdLUGgIR0C0mZ5jhDPXdX2UKGgGR0AkO5p8F6iTaAdLaWgIR0C0mZ9IwudxdX2UKGgGR8BWUttygf2caAdLh2gIR0C0mZ8PrfLtdX2UKGgGR8BNfXmeUY8/aAdLc2gIR0C0maaRU3n7dX2UKGgGR8BUUioCMgloaAdLSmgIR0C0mbJBC2MLdX2UKGgGR8Bk1NsvZh8ZaAdLYWgIR0C0mbtjkMkQdX2UKGgGR8B0/mMxXXAeaAdLd2gIR0C0mc9tMwlCdX2UKGgGR8BakzW07bL2aAdLSmgIR0C0mdAblzU7dX2UKGgGR8BY1DkU9IPLaAdLSWgIR0C0mdP9LpRodX2UKGgGR8BacZyuIRAbaAdLSWgIR0C0mdXv+fh/dX2UKGgGR8BWvtga3qiXaAdLSGgIR0C0md18stkGdX2UKGgGR8BL/brkbPyDaAdLQmgIR0C0mer8JlasdX2UKGgGR8BLPigbp/wzaAdLQmgIR0C0meukDZDidX2UKGgGR8Bd2mkJrtVraAdLVWgIR0C0mfCeZof0dX2UKGgGR8Bl3Yx8D0UXaAdLgGgIR0C0mfe4smOVdX2UKGgGR8BxnSLhrFfiaAdLfGgIR0C0mgZE6T4ddX2UKGgGR8BhxRjBl+VkaAdLdmgIR0C0mhnE/B3zdX2UKGgGR8Bl//vBrN4aaAdLb2gIR0C0miymALApdX2UKGgGR8BiDgFmnO0LaAdLQWgIR0C0mj0RFqi5dX2UKGgGR8BbVDiwSrYHaAdLV2gIR0C0mkGPHT7VdX2UKGgGR8BFB4a5wwTNaAdLdWgIR0C0mkIY3vQXdX2UKGgGR8BigPyZrpJPaAdLW2gIR0C0mkEfT1CgdX2UKGgGR8Bc57DQ7cO9aAdLQmgIR0C0mkPgzguRdX2UKGgGR8Bk8QKv3ai9aAdLYmgIR0C0mkkEPlMidX2UKGgGR8BvvSVY6nzhaAdLgGgIR0C0mlmAoXsPdX2UKGgGR8Bi3NFMIu5CaAdLXGgIR0C0mmBKQJXydX2UKGgGR8Br+mOEM9bHaAdLamgIR0C0mmKQvHtGdX2UKGgGR8Bpuelj3EhraAdLqWgIR0C0mm0svqTsdX2UKGgGR8BhmCHXVbzLaAdLZmgIR0C0mnfb9If9dX2UKGgGR0AxkwMpgCwKaAdLimgIR0C0mn9BWxQjdX2UKGgGR8BnBXjdYW+HaAdLSWgIR0C0moep0fYBdX2UKGgGR8BjRY/5ckdFaAdLdmgIR0C0mpm6PKdQdX2UKGgGR8Bb+UdJaq0daAdLUGgIR0C0mqCay8jBdX2UKGgGR8Bqwg13t8eCaAdLS2gIR0C0mp8m0E5idX2UKGgGR8B308sxwhnraAdLbWgIR0C0mqF0HQhPdX2UKGgGR8BQsthy8zyjaAdLTmgIR0C0mqRBqsU7dX2UKGgGR8BG2vPszEaVaAdLVWgIR0C0mqn0oSctdX2UKGgGR8BSHWpQ1rIpaAdLQGgIR0C0ms5C4SYgdX2UKGgGR8BU0AUtZmqYaAdLbWgIR0C0mtBMFlkIdX2UKGgGR8BV94rWiDdyaAdLZmgIR0C0muDJuEVWdX2UKGgGR8BkKaOYIBzWaAdLiGgIR0C0muuqR2bHdX2UKGgGR8BU7F0cOskqaAdLP2gIR0C0munoLXtjdX2UKGgGR8BVUA3HaN+9aAdLRWgIR0C0mvfek56udX2UKGgGR8Bwh7nfVI7OaAdLfWgIR0C0mvxzJZGKdX2UKGgGR8BPqmEPDpC8aAdLRGgIR0C0mvrtzCDVdX2UKGgGR8BiRrhisny/aAdLQ2gIR0C0mv/BJqZddX2UKGgGR8BwTU0BOpKjaAdLUmgIR0C0mwlmvnr6dX2UKGgGR8BCnw4jrzGxaAdLfGgIR0C0mwkDuBtldX2UKGgGR8BgZ46wMYuTaAdLe2gIR0C0mxQaWHDadX2UKGgGR8Bp3v8MuvlmaAdLl2gIR0C0mxp9/jKgdX2UKGgGR8BTIIixFAmiaAdLTWgIR0C0mzhMewLWdX2UKGgGR8BleyDPGACoaAdLfGgIR0C0m0JRGc4HdX2UKGgGR8BqW3DWK/EgaAdLmGgIR0C0m020Z3s5dX2UKGgGR8BwiN6Tnq3WaAdLWmgIR0C0m1pUkv9MdX2UKGgGR8BUFqZUkv9MaAdLUmgIR0C0m2bOmixndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 8, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}