|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- elsevier-oa-cc-by |
|
model-index: |
|
- name: roberta-base-finetuned-academic |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-base-finetuned-academic |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the elsevier-oa-cc-by dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.1158 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 2.1903 | 0.25 | 1025 | 2.0998 | |
|
| 2.1752 | 0.5 | 2050 | 2.1186 | |
|
| 2.1864 | 0.75 | 3075 | 2.1073 | |
|
| 2.1874 | 1.0 | 4100 | 2.1177 | |
|
| 2.1669 | 1.25 | 5125 | 2.1091 | |
|
| 2.1859 | 1.5 | 6150 | 2.1212 | |
|
| 2.1783 | 1.75 | 7175 | 2.1096 | |
|
| 2.1734 | 2.0 | 8200 | 2.0998 | |
|
| 2.1712 | 2.25 | 9225 | 2.0972 | |
|
| 2.1812 | 2.5 | 10250 | 2.1051 | |
|
| 2.1811 | 2.75 | 11275 | 2.1150 | |
|
| 2.1826 | 3.0 | 12300 | 2.1097 | |
|
| 2.172 | 3.25 | 13325 | 2.1115 | |
|
| 2.1745 | 3.5 | 14350 | 2.1098 | |
|
| 2.1758 | 3.75 | 15375 | 2.1101 | |
|
| 2.1834 | 4.0 | 16400 | 2.1232 | |
|
| 2.1836 | 4.25 | 17425 | 2.1052 | |
|
| 2.1791 | 4.5 | 18450 | 2.1186 | |
|
| 2.172 | 4.75 | 19475 | 2.1039 | |
|
| 2.1797 | 5.0 | 20500 | 2.1015 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.0.dev0 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|