mBART-TextSimp-LT-BatchSize4-lr5e-5

This model is a fine-tuned version of facebook/mbart-large-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0720
  • Rouge1: 0.7898
  • Rouge2: 0.643
  • Rougel: 0.783
  • Sacrebleu: 57.6148
  • Gen Len: 33.6014

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Sacrebleu Gen Len
0.407 1.0 209 0.1938 0.6481 0.4813 0.6379 42.027 33.6014
0.8377 2.0 418 0.1076 0.6446 0.4765 0.632 40.6092 33.7852
0.0589 3.0 627 0.0561 0.7659 0.6056 0.7581 51.836 33.6014
0.0237 4.0 836 0.0551 0.7816 0.6292 0.774 54.6775 33.6014
0.009 5.0 1045 0.0598 0.78 0.628 0.7723 54.4212 33.6014
0.0059 6.0 1254 0.0648 0.7876 0.6424 0.7805 56.5662 33.6014
0.003 7.0 1463 0.0694 0.7883 0.6405 0.781 57.3259 33.6014
0.0013 8.0 1672 0.0720 0.7898 0.643 0.783 57.6148 33.6014

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for eglkan1/mBART-TextSimp-LT-BatchSize4-lr5e-5

Finetuned
(137)
this model