mt5_base_EN_TH_sch_wiki

This model is a fine-tuned version of google/mt5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Rouge2 Precision: 0.0098
  • Rouge2 Recall: 0.0051
  • Rouge2 Fmeasure: 0.0065

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 45
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure
0.0 1.0 2879 nan 0.0098 0.0051 0.0065
0.0 2.0 5758 nan 0.0098 0.0051 0.0065
0.0 3.0 8637 nan 0.0098 0.0051 0.0065
0.0 4.0 11516 nan 0.0098 0.0051 0.0065
0.0 5.0 14395 nan 0.0098 0.0051 0.0065
0.0 6.0 17274 nan 0.0098 0.0051 0.0065
0.0 7.0 20153 nan 0.0098 0.0051 0.0065
0.0 8.0 23032 nan 0.0098 0.0051 0.0065
0.0 9.0 25911 nan 0.0098 0.0051 0.0065
0.0 10.0 28790 nan 0.0098 0.0051 0.0065
0.0 11.0 31669 nan 0.0098 0.0051 0.0065
0.0 12.0 34548 nan 0.0098 0.0051 0.0065
0.0 13.0 37427 nan 0.0098 0.0051 0.0065
0.0 14.0 40306 nan 0.0098 0.0051 0.0065
0.0 15.0 43185 nan 0.0098 0.0051 0.0065

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.2.2
  • Datasets 2.16.1
  • Tokenizers 0.20.3
Downloads last month
22
Safetensors
Model size
582M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for e22vvb/mt5_base_EN_TH_sch_wiki

Base model

google/mt5-base
Finetuned
(168)
this model