e1010101's picture
e1010101/vit-384-large-patch-tongue-image-segmented
e946e0f verified
|
raw
history blame
1.92 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-large-patch32-384
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: segmented-augmented
    results: []

segmented-augmented

This model is a fine-tuned version of google/vit-large-patch32-384 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6965
  • Precision: 0.8085
  • Recall: 0.8837
  • F1: 0.8444

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
0.0857 1.0 327 0.4359 0.8176 0.8040 0.8107
0.0164 2.0 654 0.5654 0.8043 0.8605 0.8315
0.0056 3.0 981 0.6437 0.8182 0.8671 0.8419
0.002 4.0 1308 0.6739 0.8055 0.8804 0.8413
0.003 5.0 1635 0.6965 0.8085 0.8837 0.8444

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1